YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Water Distribution–Transportation Interface Connectivity Responding to Urban Geospatial Morphology

    Source: Journal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 003
    Author:
    Noha Abdel-Mottaleb
    ,
    Qiong Zhang
    DOI: 10.1061/(ASCE)IS.1943-555X.0000563
    Publisher: ASCE
    Abstract: Water distribution and transportation systems are geospatially colocated, forming a network of connections. This network of connections is referred to as an interface network. Investigation of interface network connectivity can help understand and minimize failure propagation from water to transportation systems. Water distribution–transportation interface networks consist of nodes, which can be either pipes or roads, and edges, which represent the geospatial colocation of a pipe and road. The purpose of this study is twofold: to topologically represent geospatial colocation by characterizing the connectivity of water distribution–transportation interface networks for multiple cities, and to identify the nodal attributes that are most predictive of a given connectivity profile. A total of forty interface networks from eight cities of varying geospatial morphology are extracted and analyzed using network analysis and machine learning. Using network analysis, we investigate whether the topological connectivity between water and transportation is consistent across different cities. Then we use a random forest model to ascertain which nodal attributes may have predictive power to identify the connectivity cluster of the city to which a node belongs. The results indicate that cities of different geospatial morphology may vary in their interface network connectivity, and the average shortest path length of a given node is the major nodal feature contributing to a given city’s interface network connectivity. These findings hold implications for urban planning and water distribution design to mitigate potential cascading failures.
    • Download: (4.217Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Water Distribution–Transportation Interface Connectivity Responding to Urban Geospatial Morphology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267025
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorNoha Abdel-Mottaleb
    contributor authorQiong Zhang
    date accessioned2022-01-30T20:44:21Z
    date available2022-01-30T20:44:21Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29IS.1943-555X.0000563.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267025
    description abstractWater distribution and transportation systems are geospatially colocated, forming a network of connections. This network of connections is referred to as an interface network. Investigation of interface network connectivity can help understand and minimize failure propagation from water to transportation systems. Water distribution–transportation interface networks consist of nodes, which can be either pipes or roads, and edges, which represent the geospatial colocation of a pipe and road. The purpose of this study is twofold: to topologically represent geospatial colocation by characterizing the connectivity of water distribution–transportation interface networks for multiple cities, and to identify the nodal attributes that are most predictive of a given connectivity profile. A total of forty interface networks from eight cities of varying geospatial morphology are extracted and analyzed using network analysis and machine learning. Using network analysis, we investigate whether the topological connectivity between water and transportation is consistent across different cities. Then we use a random forest model to ascertain which nodal attributes may have predictive power to identify the connectivity cluster of the city to which a node belongs. The results indicate that cities of different geospatial morphology may vary in their interface network connectivity, and the average shortest path length of a given node is the major nodal feature contributing to a given city’s interface network connectivity. These findings hold implications for urban planning and water distribution design to mitigate potential cascading failures.
    publisherASCE
    titleWater Distribution–Transportation Interface Connectivity Responding to Urban Geospatial Morphology
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000563
    page13
    treeJournal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian