YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study of Dynamic Concentration Gradient on Mass Transfer Coefficient: New Approach to Mobile–Immobile Modeling

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2020:;Volume ( 024 ):;issue: 004
    Author:
    Abhimanyu Sharma
    ,
    Deepak Swami
    ,
    Nitin Joshi
    ,
    Suresh Kartha
    ,
    Aman Chandel
    ,
    Abhay Guleria
    DOI: 10.1061/(ASCE)HZ.2153-5515.0000523
    Publisher: ASCE
    Abstract: The theory of mobile–immobile partitioning to capture a medium’s heterogeneity for simulating the interaction of contaminant mass between these two regions is still limited to the lump value of mass transfer coefficient (MTC) that fails to capture the long tails of breakthrough curves (BTCs). For a time-dependent solute source, BTCs consists of two parts, for example, rising and falling limbs. During the rising part, the concentration in the mobile region is higher and mass transfer occurs from the mobile to immobile region. However, during falling limb concentration in the immobile region have higher values, resulting in the reverse diffusive mass transfer process. This study focuses on overcoming the reported limitations of the mobile–immobile model (MIM) in the prediction of long tails of BTC during the falling limb. To achieve this objective, we propose an approach that is based on the dynamics of time resident concentration and its gradient between hydraulically coupled mobile and immobile regions. In this modified MIM, we estimated two distinct diffusive MTCs for rising and falling limbs (RFMT) of BTCs using a nonlinear least square optimization algorithm. Two experimental data sets available in the literature were simulated using a numerical solution of the proposed model and asymptotic time-dependent dispersion function. The estimated parameters supported the hypothesis that for pulse type input, liquid phase transport during the rising limb of BTCs is governed by advection and dispersion, whereas during the falling limb it is majorly diffusive dominated that can be represented by the new MTCs. Simulated results of RFMT are then compared with continuous-time random walk (CTRW) and constant mass transfer (CMT) approaches to compare the quality of the simulation. A better overall simulation of experimental BTCs was obtained using RFMT in comparison with other models. Sensitivity analysis is also carried out to evaluate the capabilities of RFMT over the rising and falling portions of BTCs. This theory finds its application in quantifying persistent chemical residuals in the immobile region that acts as a source when purging and subsequently helps when designing appropriate cleansing operations.
    • Download: (1.617Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study of Dynamic Concentration Gradient on Mass Transfer Coefficient: New Approach to Mobile–Immobile Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266936
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorAbhimanyu Sharma
    contributor authorDeepak Swami
    contributor authorNitin Joshi
    contributor authorSuresh Kartha
    contributor authorAman Chandel
    contributor authorAbhay Guleria
    date accessioned2022-01-30T20:41:03Z
    date available2022-01-30T20:41:03Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29HZ.2153-5515.0000523.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266936
    description abstractThe theory of mobile–immobile partitioning to capture a medium’s heterogeneity for simulating the interaction of contaminant mass between these two regions is still limited to the lump value of mass transfer coefficient (MTC) that fails to capture the long tails of breakthrough curves (BTCs). For a time-dependent solute source, BTCs consists of two parts, for example, rising and falling limbs. During the rising part, the concentration in the mobile region is higher and mass transfer occurs from the mobile to immobile region. However, during falling limb concentration in the immobile region have higher values, resulting in the reverse diffusive mass transfer process. This study focuses on overcoming the reported limitations of the mobile–immobile model (MIM) in the prediction of long tails of BTC during the falling limb. To achieve this objective, we propose an approach that is based on the dynamics of time resident concentration and its gradient between hydraulically coupled mobile and immobile regions. In this modified MIM, we estimated two distinct diffusive MTCs for rising and falling limbs (RFMT) of BTCs using a nonlinear least square optimization algorithm. Two experimental data sets available in the literature were simulated using a numerical solution of the proposed model and asymptotic time-dependent dispersion function. The estimated parameters supported the hypothesis that for pulse type input, liquid phase transport during the rising limb of BTCs is governed by advection and dispersion, whereas during the falling limb it is majorly diffusive dominated that can be represented by the new MTCs. Simulated results of RFMT are then compared with continuous-time random walk (CTRW) and constant mass transfer (CMT) approaches to compare the quality of the simulation. A better overall simulation of experimental BTCs was obtained using RFMT in comparison with other models. Sensitivity analysis is also carried out to evaluate the capabilities of RFMT over the rising and falling portions of BTCs. This theory finds its application in quantifying persistent chemical residuals in the immobile region that acts as a source when purging and subsequently helps when designing appropriate cleansing operations.
    publisherASCE
    titleStudy of Dynamic Concentration Gradient on Mass Transfer Coefficient: New Approach to Mobile–Immobile Modeling
    typeJournal Paper
    journal volume24
    journal issue4
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/(ASCE)HZ.2153-5515.0000523
    page14
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2020:;Volume ( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian