YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Postflutter Analysis of Bridge Decks Using Aerodynamic-Describing Functions

    Source: Journal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 008
    Author:
    Mingjie Zhang
    ,
    Fuyou Xu
    ,
    Teng Wu
    ,
    Zhanbiao Zhang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001587
    Publisher: ASCE
    Abstract: An aerodynamic describing function (ADF)-based model for simulating the nonlinear self-excited forces on bridge decks is developed, where the ADFs can be conveniently identified using the experimentally or numerically obtained free or forced vibration data. An efficient calculation procedure based on the ADFs is accordingly established to predict the nonlinear flutter state and/or postflutter limit cycle oscillations (LCOs). Two numerical examples are utilized to demonstrate the simulation accuracy and efficiency of nonlinear bridge flutter with the proposed ADF-based model. The capabilities of the ADF-based model in capturing typical features of nonlinear postflutter vibration such as LCO and a hysteresis phenomenon are demonstrated. A nondimensional postflutter index is designed to quantitatively assess the postflutter performance of bridge decks. Finally, the effects of structural dynamics and aerodynamic properties (e.g., structural damping ratios, natural frequencies, and aerodynamic derivatives) on the postflutter behavior of a bridge deck are examined in terms of the wind speed extension after the critical state with acceptable postcritical vibrations and the proposed postflutter index.
    • Download: (2.635Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Postflutter Analysis of Bridge Decks Using Aerodynamic-Describing Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266918
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorMingjie Zhang
    contributor authorFuyou Xu
    contributor authorTeng Wu
    contributor authorZhanbiao Zhang
    date accessioned2022-01-30T20:40:36Z
    date available2022-01-30T20:40:36Z
    date issued8/1/2020 12:00:00 AM
    identifier other%28ASCE%29BE.1943-5592.0001587.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266918
    description abstractAn aerodynamic describing function (ADF)-based model for simulating the nonlinear self-excited forces on bridge decks is developed, where the ADFs can be conveniently identified using the experimentally or numerically obtained free or forced vibration data. An efficient calculation procedure based on the ADFs is accordingly established to predict the nonlinear flutter state and/or postflutter limit cycle oscillations (LCOs). Two numerical examples are utilized to demonstrate the simulation accuracy and efficiency of nonlinear bridge flutter with the proposed ADF-based model. The capabilities of the ADF-based model in capturing typical features of nonlinear postflutter vibration such as LCO and a hysteresis phenomenon are demonstrated. A nondimensional postflutter index is designed to quantitatively assess the postflutter performance of bridge decks. Finally, the effects of structural dynamics and aerodynamic properties (e.g., structural damping ratios, natural frequencies, and aerodynamic derivatives) on the postflutter behavior of a bridge deck are examined in terms of the wind speed extension after the critical state with acceptable postcritical vibrations and the proposed postflutter index.
    publisherASCE
    titlePostflutter Analysis of Bridge Decks Using Aerodynamic-Describing Functions
    typeJournal Paper
    journal volume25
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001587
    page13
    treeJournal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian