YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Neural Network Prediction of Alluvial Stream Bedforms

    Source: Journal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 012
    Author:
    David C. Froehlich
    DOI: 10.1061/(ASCE)HY.1943-7900.0001831
    Publisher: ASCE
    Abstract: Substantial laboratory, field, and theoretical studies have been carried out by many to understand alluvial stream bedform origin, their shapes, equilibrium with the flow, and their depositional structure. The findings of these analyses are often presented as phase or stability diagrams in which the dependence of the various bed states on two or three variable quantities is depicted graphically. However, the several hydrodynamic and sediment-related parameters that control bedform development in alluvial channels makes the construction of stability diagrams that display the complex interactions clearly and consistently problematic. In this study, alluvial stream bedforms are studied using a theory-guided data science approach that assures logical reasoning when analyzing physical phenomena with large amounts of data. First, a theoretical evaluation of parameters that influence bedform development is carried out, followed by a classification of the bedform type with an artificial neural network (ANN) trained using a sizeable collection of 2,412 samples (2,144 from laboratory flumes and 268 from natural streams). The neural network provides reliable predictions of bedform states and distinguishes between laboratory flumes and natural stream channels.
    • Download: (1.179Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Neural Network Prediction of Alluvial Stream Bedforms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266912
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorDavid C. Froehlich
    date accessioned2022-01-30T20:40:24Z
    date available2022-01-30T20:40:24Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29HY.1943-7900.0001831.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266912
    description abstractSubstantial laboratory, field, and theoretical studies have been carried out by many to understand alluvial stream bedform origin, their shapes, equilibrium with the flow, and their depositional structure. The findings of these analyses are often presented as phase or stability diagrams in which the dependence of the various bed states on two or three variable quantities is depicted graphically. However, the several hydrodynamic and sediment-related parameters that control bedform development in alluvial channels makes the construction of stability diagrams that display the complex interactions clearly and consistently problematic. In this study, alluvial stream bedforms are studied using a theory-guided data science approach that assures logical reasoning when analyzing physical phenomena with large amounts of data. First, a theoretical evaluation of parameters that influence bedform development is carried out, followed by a classification of the bedform type with an artificial neural network (ANN) trained using a sizeable collection of 2,412 samples (2,144 from laboratory flumes and 268 from natural streams). The neural network provides reliable predictions of bedform states and distinguishes between laboratory flumes and natural stream channels.
    publisherASCE
    titleNeural Network Prediction of Alluvial Stream Bedforms
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001831
    page13
    treeJournal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian