YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physically Based Sand Slide Method in Scour Models Based on Slope-Limited Diffusion

    Source: Journal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 011
    Author:
    Yalan Song
    ,
    Yuncheng Xu
    ,
    Xiaofeng Liu
    DOI: 10.1061/(ASCE)HY.1943-7900.0001814
    Publisher: ASCE
    Abstract: In scour simulation models, a sand slide step is necessary to treat the bed areas where the slope exceeds the angle of repose. This exceedance is due to the fact that the Exner equation does not take into consideration the angle of repose. Methods for sand slide should conserve mass, be based on physics, and give a unique final bed configuration. However, there is no existing method that satisfies all these requirements. Most previous methods use either a modified bed-load transport rate based on bed slope or purely geometric corrections. This work proposes a new method that solves a slope-limited diffusion equation. The diffusivity is conditioned upon bed slope. The method is based on the physics of sand slide and its diffusive nature. Special numerical schemes, linear gradient scheme (LGS) and Gauss nonlinear gradient scheme (GNGS), were tested for the evaluation of bed elevation gradient, which is used in the conditional function for diffusivity. LGS gives severe bed distortion due to the time lag for sand particles to slide in the diagonal direction of mesh. GNGS greatly alleviates this problem by using an extended stencil. The new sand-slide method was implemented in a 3D scour model and tested with two cases. Results show that the new sand slide method, in conjunction with the GNGS scheme or the combination of GNGS and LGS, produces efficient, physically correct, and mesh-independent results. The simulated scour hole development compares well with the experiment.
    • Download: (2.682Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physically Based Sand Slide Method in Scour Models Based on Slope-Limited Diffusion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266902
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorYalan Song
    contributor authorYuncheng Xu
    contributor authorXiaofeng Liu
    date accessioned2022-01-30T20:39:52Z
    date available2022-01-30T20:39:52Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29HY.1943-7900.0001814.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266902
    description abstractIn scour simulation models, a sand slide step is necessary to treat the bed areas where the slope exceeds the angle of repose. This exceedance is due to the fact that the Exner equation does not take into consideration the angle of repose. Methods for sand slide should conserve mass, be based on physics, and give a unique final bed configuration. However, there is no existing method that satisfies all these requirements. Most previous methods use either a modified bed-load transport rate based on bed slope or purely geometric corrections. This work proposes a new method that solves a slope-limited diffusion equation. The diffusivity is conditioned upon bed slope. The method is based on the physics of sand slide and its diffusive nature. Special numerical schemes, linear gradient scheme (LGS) and Gauss nonlinear gradient scheme (GNGS), were tested for the evaluation of bed elevation gradient, which is used in the conditional function for diffusivity. LGS gives severe bed distortion due to the time lag for sand particles to slide in the diagonal direction of mesh. GNGS greatly alleviates this problem by using an extended stencil. The new sand-slide method was implemented in a 3D scour model and tested with two cases. Results show that the new sand slide method, in conjunction with the GNGS scheme or the combination of GNGS and LGS, produces efficient, physically correct, and mesh-independent results. The simulated scour hole development compares well with the experiment.
    publisherASCE
    titlePhysically Based Sand Slide Method in Scour Models Based on Slope-Limited Diffusion
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001814
    page11
    treeJournal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian