YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Towards an Operational Flow Forecasting System for the Upper Niagara River

    Source: Journal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 009
    Author:
    Katherine Labuhn
    ,
    Andrew D. Gronewold
    ,
    Timothy Calappi
    ,
    Alison MacNeil
    ,
    Christine Brown
    ,
    Eric J. Anderson
    DOI: 10.1061/(ASCE)HY.1943-7900.0001781
    Publisher: ASCE
    Abstract: The authors developed a Hydrologic Engineering Center–River Analysis System (HEC–RAS) model to serve as the key component of a new, first-of-its-kind, short-term operational flow forecasting system for the Niagara River. The Niagara River transports a continental-scale flow (with an annual mean of roughly 6,300  m3/s) that supports the economy of both the United States and Canada through hydropower generation, tourism, and other activities. The river also serves as a link connecting the two most downstream lakes (Lakes Erie and Ontario) in the largest system of lakes on Earth. Despite its significance, the authors know of no federally operated, short-term forecasting system for the Niagara River. Hydropower facilities management and other water resources management activities on the river have historically relied on an array of experimental, in-house, or proprietary models to simulate and forecast Niagara River flows. The study presented here fills this gap in large-scale hydraulic modeling and engineering science by calibrating a HEC–RAS model for the Upper Niagara River and customizing it to meet the operational requirements of the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) Northeast River Forecasting Center (NERFC). The skill of the new forecasting system, which was recently deployed in its operational environment at the NERFC, will depend in large part on the accuracy of meteorological boundary conditions. The authors envision a more comprehensive assessment of the system’s forecasting skill and other potential future model improvements as an area for future research.
    • Download: (1.297Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Towards an Operational Flow Forecasting System for the Upper Niagara River

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266872
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorKatherine Labuhn
    contributor authorAndrew D. Gronewold
    contributor authorTimothy Calappi
    contributor authorAlison MacNeil
    contributor authorChristine Brown
    contributor authorEric J. Anderson
    date accessioned2022-01-30T20:38:51Z
    date available2022-01-30T20:38:51Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29HY.1943-7900.0001781.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266872
    description abstractThe authors developed a Hydrologic Engineering Center–River Analysis System (HEC–RAS) model to serve as the key component of a new, first-of-its-kind, short-term operational flow forecasting system for the Niagara River. The Niagara River transports a continental-scale flow (with an annual mean of roughly 6,300  m3/s) that supports the economy of both the United States and Canada through hydropower generation, tourism, and other activities. The river also serves as a link connecting the two most downstream lakes (Lakes Erie and Ontario) in the largest system of lakes on Earth. Despite its significance, the authors know of no federally operated, short-term forecasting system for the Niagara River. Hydropower facilities management and other water resources management activities on the river have historically relied on an array of experimental, in-house, or proprietary models to simulate and forecast Niagara River flows. The study presented here fills this gap in large-scale hydraulic modeling and engineering science by calibrating a HEC–RAS model for the Upper Niagara River and customizing it to meet the operational requirements of the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) Northeast River Forecasting Center (NERFC). The skill of the new forecasting system, which was recently deployed in its operational environment at the NERFC, will depend in large part on the accuracy of meteorological boundary conditions. The authors envision a more comprehensive assessment of the system’s forecasting skill and other potential future model improvements as an area for future research.
    publisherASCE
    titleTowards an Operational Flow Forecasting System for the Upper Niagara River
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001781
    page8
    treeJournal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian