YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pedestrian-Induced Vibrations of Footbridges: An Extended Spectral Approach

    Source: Journal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 008
    Author:
    K. Van Nimmen
    ,
    P. Van den Broeck
    ,
    G. Lombaert
    ,
    F. Tubino
    DOI: 10.1061/(ASCE)BE.1943-5592.0001582
    Publisher: ASCE
    Abstract: The vibration serviceability assessment of footbridges under pedestrian traffic requires a probabilistic approach considering the uncertainty in the dynamic behavior of the structure and the variability of multiple load parameters, such as the pedestrians’ arrival time and step frequency. In view of engineering applications, a major challenge lies in the development, verification, and validation of efficient prediction models. With this challenge in mind, this paper uses a spectral approach to predict the dynamic response induced by unrestricted pedestrian traffic. A spectral load model available in the literature is extended to account for multiple harmonics of the vertical walking load and for application to arbitrary mode shapes. Furthermore, a closed-form expression is proposed to estimate the variance of the multimode structural response taking into account both resonant and nonresonant contributions. The performance of the proposed approach is evaluated for a simply supported beam as well as a real footbridge where multiple modes considerably contribute to the overall structural response. The results show that the proposed approach allows a good and mildly conservative estimate of the structural response to be obtained.
    • Download: (1.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pedestrian-Induced Vibrations of Footbridges: An Extended Spectral Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266862
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorK. Van Nimmen
    contributor authorP. Van den Broeck
    contributor authorG. Lombaert
    contributor authorF. Tubino
    date accessioned2022-01-30T20:38:32Z
    date available2022-01-30T20:38:32Z
    date issued8/1/2020 12:00:00 AM
    identifier other%28ASCE%29BE.1943-5592.0001582.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266862
    description abstractThe vibration serviceability assessment of footbridges under pedestrian traffic requires a probabilistic approach considering the uncertainty in the dynamic behavior of the structure and the variability of multiple load parameters, such as the pedestrians’ arrival time and step frequency. In view of engineering applications, a major challenge lies in the development, verification, and validation of efficient prediction models. With this challenge in mind, this paper uses a spectral approach to predict the dynamic response induced by unrestricted pedestrian traffic. A spectral load model available in the literature is extended to account for multiple harmonics of the vertical walking load and for application to arbitrary mode shapes. Furthermore, a closed-form expression is proposed to estimate the variance of the multimode structural response taking into account both resonant and nonresonant contributions. The performance of the proposed approach is evaluated for a simply supported beam as well as a real footbridge where multiple modes considerably contribute to the overall structural response. The results show that the proposed approach allows a good and mildly conservative estimate of the structural response to be obtained.
    publisherASCE
    titlePedestrian-Induced Vibrations of Footbridges: An Extended Spectral Approach
    typeJournal Paper
    journal volume25
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001582
    page15
    treeJournal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian