YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Local Scour and Flow Characteristics around Pipeline Subjected to Vortex-Induced Vibrations

    Source: Journal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 001
    Author:
    Dawei Guan
    ,
    Shih-Chun Hsieh
    ,
    Yee-Meng Chiew
    ,
    Ying Min Low
    ,
    Maoxing Wei
    DOI: 10.1061/(ASCE)HY.1943-7900.0001663
    Publisher: ASCE
    Abstract: Although local scour around submarine pipelines has been extensively studied in the last few decades, understanding of the mechanism of local scour around pipelines is still in its infancy stage due to the complex nature of flow–pipeline–seabed interactions, especially when the pipeline is subjected to vibrations. This experimental study aims to obtain an improved perception of the scour mechanism around a pipeline subjected to vortex-induced vibrations. The experiments were conducted in a flow recirculation flume in clear-water scour conditions in which a circular cylinder with diameter (D) of 35 mm was used as the pipeline model. The initial gap (G0) between the underside of the pipeline and undisturbed flat-bed level was 0.45D. The time evolution of the pipeline motion and scour profile around the pipeline was measured using a high-speed camera and laser sources. The flow fields around the vibrating pipeline were obtained using the particle image velocimetry (PIV) technique and phase-average analysis. Based on the characteristics of the development of the scour hole and pipeline motions, three scour stages are identified. The downward motion of the vibrating pipeline and interactions between the counterclockwise vortex (downstream of the pipeline) that sheds from the lower shear layer of the pipeline and sediment bed are found to be the primary mechanisms that cause the formation of the scour holes beneath the pipeline. The interactive coupling effects among the vibrating pipeline, flow field, and scour process also are discussed in this study.
    • Download: (17.67Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Local Scour and Flow Characteristics around Pipeline Subjected to Vortex-Induced Vibrations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266845
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorDawei Guan
    contributor authorShih-Chun Hsieh
    contributor authorYee-Meng Chiew
    contributor authorYing Min Low
    contributor authorMaoxing Wei
    date accessioned2022-01-30T20:38:00Z
    date available2022-01-30T20:38:00Z
    date issued1/1/2020 12:00:00 AM
    identifier other%28ASCE%29HY.1943-7900.0001663.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266845
    description abstractAlthough local scour around submarine pipelines has been extensively studied in the last few decades, understanding of the mechanism of local scour around pipelines is still in its infancy stage due to the complex nature of flow–pipeline–seabed interactions, especially when the pipeline is subjected to vibrations. This experimental study aims to obtain an improved perception of the scour mechanism around a pipeline subjected to vortex-induced vibrations. The experiments were conducted in a flow recirculation flume in clear-water scour conditions in which a circular cylinder with diameter (D) of 35 mm was used as the pipeline model. The initial gap (G0) between the underside of the pipeline and undisturbed flat-bed level was 0.45D. The time evolution of the pipeline motion and scour profile around the pipeline was measured using a high-speed camera and laser sources. The flow fields around the vibrating pipeline were obtained using the particle image velocimetry (PIV) technique and phase-average analysis. Based on the characteristics of the development of the scour hole and pipeline motions, three scour stages are identified. The downward motion of the vibrating pipeline and interactions between the counterclockwise vortex (downstream of the pipeline) that sheds from the lower shear layer of the pipeline and sediment bed are found to be the primary mechanisms that cause the formation of the scour holes beneath the pipeline. The interactive coupling effects among the vibrating pipeline, flow field, and scour process also are discussed in this study.
    publisherASCE
    titleLocal Scour and Flow Characteristics around Pipeline Subjected to Vortex-Induced Vibrations
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001663
    page15
    treeJournal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian