YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Analytical Investigation of Ponded Ditch Drainage System with Temporal Boundaries

    Source: Journal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 012
    Author:
    Ratan Sarmah
    ,
    Gautam Barua
    ,
    Suresh A. Kartha
    DOI: 10.1061/(ASCE)HE.1943-5584.0002012
    Publisher: ASCE
    Abstract: An analytical solution is proposed for a two-dimensional, fully-penetrating ditch drainage system by considering the boundaries at the ditch face and at the soil surface to change with time. The general assumption of instantaneous boundary impositions at the ditch face and at the surface of the soil is replaced by continuous time-varying boundary impositions at these faces, as they are expected to be more realistic and readily realized in actual field situations, as compared to static and instantaneous boundaries at the ditches and at the surface of the soil. However, the proposed analytical model is a versatile one, capable of tackling both instantaneous and continuous boundary impositions alike. To ascertain the validity of the solution, a few experiments on them have also been carried out. Further, the correctness of the proposed model is also checked for a simplified flow scenario by comparing it with an existing analytical solution to the problem. The study highlights that with the imposition of time-dependent boundaries, the maximum top discharge value gets reduced by multiple folds as compared to ponded drainage situations in which boundaries have been instantaneously imposed. It is also observed that the time taken by a ponded drainage system to reach a steady-state has a direct correlation with the time required to create steady water depths at the different boundaries of the problem. Further, the pathline and travel time of water particles are both found to be sensitive to the nature and distribution of the time-dependent boundaries of the problem.
    • Download: (799.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Analytical Investigation of Ponded Ditch Drainage System with Temporal Boundaries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266837
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorRatan Sarmah
    contributor authorGautam Barua
    contributor authorSuresh A. Kartha
    date accessioned2022-01-30T20:37:42Z
    date available2022-01-30T20:37:42Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29HE.1943-5584.0002012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266837
    description abstractAn analytical solution is proposed for a two-dimensional, fully-penetrating ditch drainage system by considering the boundaries at the ditch face and at the soil surface to change with time. The general assumption of instantaneous boundary impositions at the ditch face and at the surface of the soil is replaced by continuous time-varying boundary impositions at these faces, as they are expected to be more realistic and readily realized in actual field situations, as compared to static and instantaneous boundaries at the ditches and at the surface of the soil. However, the proposed analytical model is a versatile one, capable of tackling both instantaneous and continuous boundary impositions alike. To ascertain the validity of the solution, a few experiments on them have also been carried out. Further, the correctness of the proposed model is also checked for a simplified flow scenario by comparing it with an existing analytical solution to the problem. The study highlights that with the imposition of time-dependent boundaries, the maximum top discharge value gets reduced by multiple folds as compared to ponded drainage situations in which boundaries have been instantaneously imposed. It is also observed that the time taken by a ponded drainage system to reach a steady-state has a direct correlation with the time required to create steady water depths at the different boundaries of the problem. Further, the pathline and travel time of water particles are both found to be sensitive to the nature and distribution of the time-dependent boundaries of the problem.
    publisherASCE
    titleExperimental and Analytical Investigation of Ponded Ditch Drainage System with Temporal Boundaries
    typeJournal Paper
    journal volume25
    journal issue12
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0002012
    page11
    treeJournal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian