YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimating Variance–Covariance Matrix of the Parameters of a Fitted Triaxial Ellipsoid

    Source: Journal of Surveying Engineering:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Tomás Soler
    ,
    J.-Y. Han
    ,
    C. J. Huang
    DOI: 10.1061/(ASCE)SU.1943-5428.0000308
    Publisher: ASCE
    Abstract: Least-squares (LS) techniques have been a frequent choice advocated by a plethora of engineers for modeling problems requiring a unique solution based on sets of redundant observations perturbed by random noise. In this paper, several versions of LS procedures using the general quadric polynomial equation as the math model are reviewed and applied to a triaxial ellipsoid fitting exercise. The coefficients of this polynomial are then transformed into the nine parameters defining the spatial properties of the ellipsoid: semiaxes, coordinates of the origin, and rotation angles. Finally, a novel methodology requiring eigentheory is introduced to complete the determination of the variance–covariance matrices of these parameters.
    • Download: (538.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimating Variance–Covariance Matrix of the Parameters of a Fitted Triaxial Ellipsoid

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266733
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorTomás Soler
    contributor authorJ.-Y. Han
    contributor authorC. J. Huang
    date accessioned2022-01-30T20:14:04Z
    date available2022-01-30T20:14:04Z
    date issued2020
    identifier other%28ASCE%29SU.1943-5428.0000308.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266733
    description abstractLeast-squares (LS) techniques have been a frequent choice advocated by a plethora of engineers for modeling problems requiring a unique solution based on sets of redundant observations perturbed by random noise. In this paper, several versions of LS procedures using the general quadric polynomial equation as the math model are reviewed and applied to a triaxial ellipsoid fitting exercise. The coefficients of this polynomial are then transformed into the nine parameters defining the spatial properties of the ellipsoid: semiaxes, coordinates of the origin, and rotation angles. Finally, a novel methodology requiring eigentheory is introduced to complete the determination of the variance–covariance matrices of these parameters.
    publisherASCE
    titleEstimating Variance–Covariance Matrix of the Parameters of a Fitted Triaxial Ellipsoid
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000308
    page04020003
    treeJournal of Surveying Engineering:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian