YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Novel Self-Centering Seismic Base Isolators Incorporating Superelastic Shape Memory Alloys

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Bin Wang
    ,
    Songye Zhu
    ,
    Fabio Casciati
    DOI: 10.1061/(ASCE)ST.1943-541X.0002679
    Publisher: ASCE
    Abstract: This paper proposes novel self-centering (SC) seismic base isolators by utilizing shape memory alloy U-shaped dampers (SMA-UDs) with favorable superelastic behavior. Two different designs, which incorporate the SMA-UDs into a conventional laminated rubber bearing with a lead core or that with steel-UDs, are investigated. In both designs, four groups of superelastic SMA-UDs are arranged symmetrically around the rubber bearings. In the SC seismic base isolators, the laminated rubber bearings withstand the high vertical loads from superstructures, and the lead cores or the steel-UDs provide the majority of energy dissipation through hysteresis behavior under cyclic loading. Moreover, the superelastic SMA-UDs spontaneously offer excellent SC force, which can effectively minimize residual deformations and reduce downtime after earthquakes. This study first illustrates the working mechanism and performance of the SMA-UDs in the base isolators through a series of component tests under loadings with different directions (i.e., in-plane and out-of-plane directions), protocols, and frequencies. Subsequently, the principles and performances of the SC base isolators are examined systematically through the quasistatic cyclic loading tests of the conventional and proposed base isolators. Test results demonstrate that these SC base isolators can exhibit satisfactory SC capability and stable energy dissipation. Moreover, the hysteresis characteristics of the SC base isolators are nearly isotropic, thereby enabling the SC base isolators to resist seismic actions in any horizontal direction. In comparison with conventional seismic base isolators, the proposed SC base isolators will provide a promising type of high-performance seismic-resilient devices required by modern civil infrastructure.
    • Download: (4.333Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Novel Self-Centering Seismic Base Isolators Incorporating Superelastic Shape Memory Alloys

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266715
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorBin Wang
    contributor authorSongye Zhu
    contributor authorFabio Casciati
    date accessioned2022-01-30T20:13:25Z
    date available2022-01-30T20:13:25Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002679.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266715
    description abstractThis paper proposes novel self-centering (SC) seismic base isolators by utilizing shape memory alloy U-shaped dampers (SMA-UDs) with favorable superelastic behavior. Two different designs, which incorporate the SMA-UDs into a conventional laminated rubber bearing with a lead core or that with steel-UDs, are investigated. In both designs, four groups of superelastic SMA-UDs are arranged symmetrically around the rubber bearings. In the SC seismic base isolators, the laminated rubber bearings withstand the high vertical loads from superstructures, and the lead cores or the steel-UDs provide the majority of energy dissipation through hysteresis behavior under cyclic loading. Moreover, the superelastic SMA-UDs spontaneously offer excellent SC force, which can effectively minimize residual deformations and reduce downtime after earthquakes. This study first illustrates the working mechanism and performance of the SMA-UDs in the base isolators through a series of component tests under loadings with different directions (i.e., in-plane and out-of-plane directions), protocols, and frequencies. Subsequently, the principles and performances of the SC base isolators are examined systematically through the quasistatic cyclic loading tests of the conventional and proposed base isolators. Test results demonstrate that these SC base isolators can exhibit satisfactory SC capability and stable energy dissipation. Moreover, the hysteresis characteristics of the SC base isolators are nearly isotropic, thereby enabling the SC base isolators to resist seismic actions in any horizontal direction. In comparison with conventional seismic base isolators, the proposed SC base isolators will provide a promising type of high-performance seismic-resilient devices required by modern civil infrastructure.
    publisherASCE
    titleExperimental Study of Novel Self-Centering Seismic Base Isolators Incorporating Superelastic Shape Memory Alloys
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002679
    page04020129
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian