YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical and Numerical Investigation of a Steel Module with a Postbuckling Transition Mechanism for Dynamic Dissipation

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Hui Fang
    ,
    Renxia Wu
    ,
    Liya Duan
    ,
    Yong Liu
    DOI: 10.1061/(ASCE)ST.1943-541X.0002675
    Publisher: ASCE
    Abstract: Sudden extreme loads acting on a marine structure can seriously damage components; thus, a structural module is beneficial for simultaneously load bearing and energy dissipating. However, the low damping characteristic of metal members allows a lasting dynamic response. In this paper, a specially designed metal module is proposed. In this module, the postbuckling transition of the inner eccentric columns in the elastic state creates a hysteresis relation with an initial stiffness that is close to that of the metal material under a tension-compression load. The hysteretic characteristics of this module are simulated via finite element modeling (FEM). Theoretical models are deduced to determine the critical buckling and postbuckling transition; this work results in a piecewise equation that approximately describes the system dynamics. Using an averaging method, the constitutive relation between the structural slenderness parameter and dissipation performance is delineated by obtaining analytical expressions for the time-domain variation in the response amplitude. Analyses of different geometric parameters illustrate the damping and stiffness design of the nonlinear module. The hysteresis module is integrated as a bracing member and embedded in a representative jacket platform. In the simulation, a three-dimensional FEM and a user-defined material (UMAT) subroutine are combined in ABAQUS such that the hysteretic bracing member mitigates the wave impact response of the structure within the elastic range. The simulation results demonstrate the potential of the hysteretic module with a postbuckling transition mechanism to ensure high stiffness and to enhance damping in marine structures.
    • Download: (3.792Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical and Numerical Investigation of a Steel Module with a Postbuckling Transition Mechanism for Dynamic Dissipation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266711
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorHui Fang
    contributor authorRenxia Wu
    contributor authorLiya Duan
    contributor authorYong Liu
    date accessioned2022-01-30T20:13:18Z
    date available2022-01-30T20:13:18Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002675.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266711
    description abstractSudden extreme loads acting on a marine structure can seriously damage components; thus, a structural module is beneficial for simultaneously load bearing and energy dissipating. However, the low damping characteristic of metal members allows a lasting dynamic response. In this paper, a specially designed metal module is proposed. In this module, the postbuckling transition of the inner eccentric columns in the elastic state creates a hysteresis relation with an initial stiffness that is close to that of the metal material under a tension-compression load. The hysteretic characteristics of this module are simulated via finite element modeling (FEM). Theoretical models are deduced to determine the critical buckling and postbuckling transition; this work results in a piecewise equation that approximately describes the system dynamics. Using an averaging method, the constitutive relation between the structural slenderness parameter and dissipation performance is delineated by obtaining analytical expressions for the time-domain variation in the response amplitude. Analyses of different geometric parameters illustrate the damping and stiffness design of the nonlinear module. The hysteresis module is integrated as a bracing member and embedded in a representative jacket platform. In the simulation, a three-dimensional FEM and a user-defined material (UMAT) subroutine are combined in ABAQUS such that the hysteretic bracing member mitigates the wave impact response of the structure within the elastic range. The simulation results demonstrate the potential of the hysteretic module with a postbuckling transition mechanism to ensure high stiffness and to enhance damping in marine structures.
    publisherASCE
    titleAnalytical and Numerical Investigation of a Steel Module with a Postbuckling Transition Mechanism for Dynamic Dissipation
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002675
    page04020115
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian