YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reinforced-Concrete Shear Walls Retrofitted Using Weakening and Self-Centering: Numerical Modeling

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Sina Basereh
    ,
    Pinar Okumus
    ,
    Sriram Aaleti
    DOI: 10.1061/(ASCE)ST.1943-541X.0002669
    Publisher: ASCE
    Abstract: This paper investigates a novel retrofit strategy for code-deficient reinforced-concrete (RC) shear walls that are vulnerable to undesirable failure modes. The strategy combines weakening by partially cutting the wall base and self-centering by adding post-tensioning. RC walls in need of retrofit were analyzed under lateral cyclic loading using three-dimensional (3D) finite element (FE) modeling. Analyses were validated using test data from the literature on conventional walls that failed in flexure/shear and pure shear. These analyses were used to study the retrofit strategy. A parametric study was conducted to determine the working details of the retrofit method. A method was proposed to select retrofit parameters preliminarily. Retrofitted and original walls were compared. The sequence in which wall components failed was documented to identify changes in failure modes. Results of the analyses showed that although retrofitting reduced energy dissipation capacity, flexural displacements increased due to retrofit of poorly designed RC walls suffering from partial or pure shear failure. Retrofit resulted in fewer cracks, less intense concrete crushing, and a delayed fracture of transverse reinforcement.
    • Download: (3.056Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reinforced-Concrete Shear Walls Retrofitted Using Weakening and Self-Centering: Numerical Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266708
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSina Basereh
    contributor authorPinar Okumus
    contributor authorSriram Aaleti
    date accessioned2022-01-30T20:13:11Z
    date available2022-01-30T20:13:11Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002669.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266708
    description abstractThis paper investigates a novel retrofit strategy for code-deficient reinforced-concrete (RC) shear walls that are vulnerable to undesirable failure modes. The strategy combines weakening by partially cutting the wall base and self-centering by adding post-tensioning. RC walls in need of retrofit were analyzed under lateral cyclic loading using three-dimensional (3D) finite element (FE) modeling. Analyses were validated using test data from the literature on conventional walls that failed in flexure/shear and pure shear. These analyses were used to study the retrofit strategy. A parametric study was conducted to determine the working details of the retrofit method. A method was proposed to select retrofit parameters preliminarily. Retrofitted and original walls were compared. The sequence in which wall components failed was documented to identify changes in failure modes. Results of the analyses showed that although retrofitting reduced energy dissipation capacity, flexural displacements increased due to retrofit of poorly designed RC walls suffering from partial or pure shear failure. Retrofit resulted in fewer cracks, less intense concrete crushing, and a delayed fracture of transverse reinforcement.
    publisherASCE
    titleReinforced-Concrete Shear Walls Retrofitted Using Weakening and Self-Centering: Numerical Modeling
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002669
    page04020122
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian