YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Autonomous Fire Resistance Evaluation

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 006
    Author:
    M. Z. Naser
    DOI: 10.1061/(ASCE)ST.1943-541X.0002641
    Publisher: ASCE
    Abstract: The structural fire engineering community has been slowly evolving over the past few decades. While we continue to favor a classical stand toward evaluating fire resistance of structures through fire experimentations, a movement toward developing numerical assessment tools is on the rise. A close examination of notable works shows that the majority of these tools continue to have limited scalability, lack standardization, and thorough validation. Perhaps two of the main challenges of adopting such tools can be summed by their need for collecting true representation of response parameters (e.g., temperature-dependent material properties, etc.), and necessity to carry out resource-intensive two-stage thermo-structural analysis. In order to overcome such challenges, and in pursuit of modernizing fire resistance evaluation, this paper introduces a new generation of fire-based evaluation tools that capitalize on perception rather than imitation. More specifically, this paper explores how automation and cognition (A&C), realized through machine learning (ML), can be applied to comprehend structural behavior under fire conditions. To achieve this goal, genetic programing (GP) and computer vision (CV) are used to assess fire response of structural members. The outcome of this study demonstrates that A&C can accurately evaluate fire resistance and identify damage/spalling magnitude in reinforced concrete (RC) structures; thus, paving the way to realize autonomous fire-based evaluation and inspection.
    • Download: (1.431Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Autonomous Fire Resistance Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266681
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorM. Z. Naser
    date accessioned2022-01-30T20:12:14Z
    date available2022-01-30T20:12:14Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002641.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266681
    description abstractThe structural fire engineering community has been slowly evolving over the past few decades. While we continue to favor a classical stand toward evaluating fire resistance of structures through fire experimentations, a movement toward developing numerical assessment tools is on the rise. A close examination of notable works shows that the majority of these tools continue to have limited scalability, lack standardization, and thorough validation. Perhaps two of the main challenges of adopting such tools can be summed by their need for collecting true representation of response parameters (e.g., temperature-dependent material properties, etc.), and necessity to carry out resource-intensive two-stage thermo-structural analysis. In order to overcome such challenges, and in pursuit of modernizing fire resistance evaluation, this paper introduces a new generation of fire-based evaluation tools that capitalize on perception rather than imitation. More specifically, this paper explores how automation and cognition (A&C), realized through machine learning (ML), can be applied to comprehend structural behavior under fire conditions. To achieve this goal, genetic programing (GP) and computer vision (CV) are used to assess fire response of structural members. The outcome of this study demonstrates that A&C can accurately evaluate fire resistance and identify damage/spalling magnitude in reinforced concrete (RC) structures; thus, paving the way to realize autonomous fire-based evaluation and inspection.
    publisherASCE
    titleAutonomous Fire Resistance Evaluation
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002641
    page04020103
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian