YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Aluminum Alloy Channel Section Beams

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Ji-Hua Zhu
    ,
    Zi-qi Li
    ,
    Meini Su
    ,
    Ben Young
    DOI: 10.1061/(ASCE)ST.1943-541X.0002615
    Publisher: ASCE
    Abstract: Aluminum alloy members of channel sections are widely used in lightweight structures, especially as pillars of curtain wall systems and brace and chord members in roof trusses. This paper presents both experimental and numerical studies on the behavior of aluminum alloy channel section beams. In this study, four-point bending tests under minor-axis and major-axis bending were carried out. The test specimens included plain and lipped channel sections of both 6063-T5 and 6061-T6 aluminum alloys. A finite-element (FE) model of the channel section beam was developed by using the FE package ABAQUS. The ultimate bending resistances and failure modes of the FE model were compared with the results from the bending tests. The validated model was employed for the parametric study to generate numerical simulation results. A total of 55 new experimental and numerical beam results were compared with predictions from existing aluminum alloy design specifications from the United States, Australia/New Zealand, Europe, and China. Additionally, two commonly used design approaches—the continuous strength method (CSM) and the direct strength method (DSM)—were applied to predict bending capacities for comparisons. A modified DSM approach for aluminum alloy channel section beams is proposed herein. Finally, reliability analyses were conducted to evaluate the aforementioned design methods. The results show that, in comparison with other considered design methods, the CSM provides more accurate and consistent results for aluminum alloy plain and lipped channel section beams.
    • Download: (1.970Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Aluminum Alloy Channel Section Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266653
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJi-Hua Zhu
    contributor authorZi-qi Li
    contributor authorMeini Su
    contributor authorBen Young
    date accessioned2022-01-30T20:11:12Z
    date available2022-01-30T20:11:12Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002615.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266653
    description abstractAluminum alloy members of channel sections are widely used in lightweight structures, especially as pillars of curtain wall systems and brace and chord members in roof trusses. This paper presents both experimental and numerical studies on the behavior of aluminum alloy channel section beams. In this study, four-point bending tests under minor-axis and major-axis bending were carried out. The test specimens included plain and lipped channel sections of both 6063-T5 and 6061-T6 aluminum alloys. A finite-element (FE) model of the channel section beam was developed by using the FE package ABAQUS. The ultimate bending resistances and failure modes of the FE model were compared with the results from the bending tests. The validated model was employed for the parametric study to generate numerical simulation results. A total of 55 new experimental and numerical beam results were compared with predictions from existing aluminum alloy design specifications from the United States, Australia/New Zealand, Europe, and China. Additionally, two commonly used design approaches—the continuous strength method (CSM) and the direct strength method (DSM)—were applied to predict bending capacities for comparisons. A modified DSM approach for aluminum alloy channel section beams is proposed herein. Finally, reliability analyses were conducted to evaluate the aforementioned design methods. The results show that, in comparison with other considered design methods, the CSM provides more accurate and consistent results for aluminum alloy plain and lipped channel section beams.
    publisherASCE
    titleDesign of Aluminum Alloy Channel Section Beams
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002615
    page04020074
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian