YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reduced-Order Modeling of Composite Floor Slabs in Fire. II: Thermal-Structural Analysis

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 006
    Author:
    Jian Jiang
    ,
    Joseph A. Main
    ,
    Jonathan M. Weigand
    ,
    Fahim Sadek
    DOI: 10.1061/(ASCE)ST.1943-541X.0002607
    Publisher: ASCE
    Abstract: This paper describes a reduced-order modeling approach for the thermal and structural analysis of fire effects on composite slabs with profiled steel decking. The reduced-order modeling approach, which uses alternating strips of layered shell elements to represent the thick and thin portions of the slab, allows both thermal and structural analyses to be performed using a single model. The modeling approach accounts for: (1) the trapezoidal profile of the concrete in the ribs; (2) the structural resistance provided by the steel decking, including the webs of the decking; and (3) the orthotropic behavior of the decking, which provides greater resistance along the ribs than transverse to the ribs. The modeling approach is validated against experimental data from one-way composite slabs tested under ambient-temperature, a one-way composite slab tested under fire conditions, and a two-way composite slab tested under fire conditions. Both implicit and explicit solution schemes are evaluated for the structural analysis, and the results show that it is feasible to scale down the hours-long fire duration to a simulation time of seconds in an explicit dynamic analysis, without adversely affecting the accuracy of the results. The steel decking contributes significantly to the structural resistance at an ambient temperature, but as expected, its contribution is found to decrease rapidly under fire exposure. The modeling approach can account for the location of reinforcing bars (i.e., at a specified depth in either the thick or thin portion of the slab), and it is found that reinforcement location can have a significant effect on the structural response, because heat transfer in the composite slab results in higher temperatures in the thin portions of the slab between the ribs.
    • Download: (1.511Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reduced-Order Modeling of Composite Floor Slabs in Fire. II: Thermal-Structural Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266643
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJian Jiang
    contributor authorJoseph A. Main
    contributor authorJonathan M. Weigand
    contributor authorFahim Sadek
    date accessioned2022-01-30T20:10:51Z
    date available2022-01-30T20:10:51Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002607.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266643
    description abstractThis paper describes a reduced-order modeling approach for the thermal and structural analysis of fire effects on composite slabs with profiled steel decking. The reduced-order modeling approach, which uses alternating strips of layered shell elements to represent the thick and thin portions of the slab, allows both thermal and structural analyses to be performed using a single model. The modeling approach accounts for: (1) the trapezoidal profile of the concrete in the ribs; (2) the structural resistance provided by the steel decking, including the webs of the decking; and (3) the orthotropic behavior of the decking, which provides greater resistance along the ribs than transverse to the ribs. The modeling approach is validated against experimental data from one-way composite slabs tested under ambient-temperature, a one-way composite slab tested under fire conditions, and a two-way composite slab tested under fire conditions. Both implicit and explicit solution schemes are evaluated for the structural analysis, and the results show that it is feasible to scale down the hours-long fire duration to a simulation time of seconds in an explicit dynamic analysis, without adversely affecting the accuracy of the results. The steel decking contributes significantly to the structural resistance at an ambient temperature, but as expected, its contribution is found to decrease rapidly under fire exposure. The modeling approach can account for the location of reinforcing bars (i.e., at a specified depth in either the thick or thin portion of the slab), and it is found that reinforcement location can have a significant effect on the structural response, because heat transfer in the composite slab results in higher temperatures in the thin portions of the slab between the ribs.
    publisherASCE
    titleReduced-Order Modeling of Composite Floor Slabs in Fire. II: Thermal-Structural Analysis
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002607
    page04020081
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian