YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Structures That Adapt to Loads through Large Shape Changes

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Arka P. Reksowardojo
    ,
    Gennaro Senatore
    ,
    Ian F. C. Smith
    DOI: 10.1061/(ASCE)ST.1943-541X.0002604
    Publisher: ASCE
    Abstract: Adaptive structures can modify their geometry and internal forces through sensing and mechanical actuation in order to maintain optimal performance under changing actions. Previous work has shown that well-conceived adaptive design strategies achieve substantial whole-life energy savings compared with traditional passive designs. The whole-life energy comprises an embodied part in the material and an operational part for structural adaptation. Structural adaptation through controlled large shape changes allows a significant stress redistribution so that the design is not governed by extreme loads with long return periods. This way, material utilization is maximized, and thus embodied energy is reduced. This paper presents a new design process for adaptive structures based on geometry and member sizing optimization in combination with actuator placement optimization. This method consists of two parts: (1) geometry and sizing optimization through sequential quadratic programming is carried out to obtain shapes that are optimal for each load case; and (2) a formulation based on stochastic search and the nonlinear force method (NFM) is employed to obtain an optimal actuator layout and commands to control the structure into the target shapes obtained from Part 1. A case study of a planar statically indeterminate truss is presented. Numerical results show that 17% and 37% embodied energy savings are achieved with respect to an identical active structure designed to adapt through small shape changes and to a weight-optimized passive structure, respectively. The combinatorial task of optimal actuator placement is carried out efficiently. The method formulated in this work produces actuator layouts that enable accurate geometric nonlinear shape control under quasi-static loading through a low number of actuators compared to the number of members of the structure.
    • Download: (2.126Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Structures That Adapt to Loads through Large Shape Changes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266641
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorArka P. Reksowardojo
    contributor authorGennaro Senatore
    contributor authorIan F. C. Smith
    date accessioned2022-01-30T20:10:47Z
    date available2022-01-30T20:10:47Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002604.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266641
    description abstractAdaptive structures can modify their geometry and internal forces through sensing and mechanical actuation in order to maintain optimal performance under changing actions. Previous work has shown that well-conceived adaptive design strategies achieve substantial whole-life energy savings compared with traditional passive designs. The whole-life energy comprises an embodied part in the material and an operational part for structural adaptation. Structural adaptation through controlled large shape changes allows a significant stress redistribution so that the design is not governed by extreme loads with long return periods. This way, material utilization is maximized, and thus embodied energy is reduced. This paper presents a new design process for adaptive structures based on geometry and member sizing optimization in combination with actuator placement optimization. This method consists of two parts: (1) geometry and sizing optimization through sequential quadratic programming is carried out to obtain shapes that are optimal for each load case; and (2) a formulation based on stochastic search and the nonlinear force method (NFM) is employed to obtain an optimal actuator layout and commands to control the structure into the target shapes obtained from Part 1. A case study of a planar statically indeterminate truss is presented. Numerical results show that 17% and 37% embodied energy savings are achieved with respect to an identical active structure designed to adapt through small shape changes and to a weight-optimized passive structure, respectively. The combinatorial task of optimal actuator placement is carried out efficiently. The method formulated in this work produces actuator layouts that enable accurate geometric nonlinear shape control under quasi-static loading through a low number of actuators compared to the number of members of the structure.
    publisherASCE
    titleDesign of Structures That Adapt to Loads through Large Shape Changes
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002604
    page04020068
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian