YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Galloping Stability Criterion for 3-DOF Coupled Motion of an Ice-Accreted Conductor

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Wenjuan Lou
    ,
    Dengguo Wu
    ,
    Haiwei Xu
    ,
    Jiang Yu
    DOI: 10.1061/(ASCE)ST.1943-541X.0002601
    Publisher: ASCE
    Abstract: This study presents an analytical galloping stability criterion for a three-degree-of-freedom (3-DOF) coupled motion of an ice-accreted conductor by using the eigenvalue perturbation method. To compare the validity of this theory with the classical Den Hartog and Nigol galloping mechanism as well as numerical method, an aeroelastic model of a six-bundled conductor with D-shape ice coating was investigated using a wind tunnel test under different attack angles, wind velocities, and conductor vertical to rotational natural frequency ratios. The experimental results show that wind velocity and frequency ratio have significant effects on galloping initiation characteristics. Under a wind attack azimuth of 70°, vertical galloping enhances with increasing wind velocity for conductor with a low frequency ratio but vanishes for high frequency ratio at high wind velocity. Test results under wind azimuth of 85° indicate that torsional galloping seems more prone to be excited when the vertical natural frequency is smaller than the rotational one. The classical Den Hartog and Nigol galloping theories are unable to explain some experimental galloping phenomena, while the proposed 3-DOF galloping stability criterion can give reasonable predictions of galloping occurrences consistent with all experiment observations. Comparisons between the analytical model and numerical method also show good agreements in galloping initiation predictions, suggesting the proposed 3-DOF galloping stability criterion is reasonable.
    • Download: (1.596Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Galloping Stability Criterion for 3-DOF Coupled Motion of an Ice-Accreted Conductor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266637
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorWenjuan Lou
    contributor authorDengguo Wu
    contributor authorHaiwei Xu
    contributor authorJiang Yu
    date accessioned2022-01-30T20:10:36Z
    date available2022-01-30T20:10:36Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266637
    description abstractThis study presents an analytical galloping stability criterion for a three-degree-of-freedom (3-DOF) coupled motion of an ice-accreted conductor by using the eigenvalue perturbation method. To compare the validity of this theory with the classical Den Hartog and Nigol galloping mechanism as well as numerical method, an aeroelastic model of a six-bundled conductor with D-shape ice coating was investigated using a wind tunnel test under different attack angles, wind velocities, and conductor vertical to rotational natural frequency ratios. The experimental results show that wind velocity and frequency ratio have significant effects on galloping initiation characteristics. Under a wind attack azimuth of 70°, vertical galloping enhances with increasing wind velocity for conductor with a low frequency ratio but vanishes for high frequency ratio at high wind velocity. Test results under wind azimuth of 85° indicate that torsional galloping seems more prone to be excited when the vertical natural frequency is smaller than the rotational one. The classical Den Hartog and Nigol galloping theories are unable to explain some experimental galloping phenomena, while the proposed 3-DOF galloping stability criterion can give reasonable predictions of galloping occurrences consistent with all experiment observations. Comparisons between the analytical model and numerical method also show good agreements in galloping initiation predictions, suggesting the proposed 3-DOF galloping stability criterion is reasonable.
    publisherASCE
    titleGalloping Stability Criterion for 3-DOF Coupled Motion of an Ice-Accreted Conductor
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002601
    page04020071
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian