YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Buckling of Shallow Spherical Concrete Domes under Gravity and Earthquake Loads

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Mehdi S. Zarghamee
    ,
    Andrew T. Sarawit
    DOI: 10.1061/(ASCE)ST.1943-541X.0002595
    Publisher: ASCE
    Abstract: Buckling analysis of spherical concrete domes constructed over prestressed concrete tanks subjected to gravity and earthquake load combinations is complex due to the sensitivity of spherical dome buckling to geometric imperfection, the effect of creep and shrinkage on amplifying the deflection of the dome (increasing the radius of curvature of the deformed dome and reducing the buckling resistance), and the geometric and material nonlinearity of the concrete dome. Study of imperfections has shown that imperfections that increase the average radius of curvature in an area the size of an elastic buckle have the highest impact in reducing buckling strength; thus, the problem of buckling of the concrete dome is reducible to the snap-through buckling of a shallow cap equal in size to an elastic buckle of the dome. In this paper, the buckling of a shallow cap subjected to gravity and seismic load combinations is determined using nonlinear geometry, material nonlinearity of concrete (accounting for softening and cracking in tension and microcracking and crushing in compression), and time-dependent creep and shrinkage of concrete. The analysis is performed in three steps: in the first step, the cap is analyzed for gravity loads; in the second step, the cap is analyzed for the effects of creep and shrinkage strains; and in the third step, the earthquake load is applied until the snap-through buckling occurs. The analysis was carried out on a set of domes designed for gravity load combinations alone. These domes cover the extremes of size and rise of the domes that are currently constructed over prestressed concrete tanks. The results show that the majority of existing domes that are not in high-seismicity zones and are designed for gravity load combinations have capacity for earthquake loading. The results are also of value in the design of new domes for load combinations that include earthquake loading.
    • Download: (1.835Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Buckling of Shallow Spherical Concrete Domes under Gravity and Earthquake Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266632
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMehdi S. Zarghamee
    contributor authorAndrew T. Sarawit
    date accessioned2022-01-30T20:10:27Z
    date available2022-01-30T20:10:27Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002595.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266632
    description abstractBuckling analysis of spherical concrete domes constructed over prestressed concrete tanks subjected to gravity and earthquake load combinations is complex due to the sensitivity of spherical dome buckling to geometric imperfection, the effect of creep and shrinkage on amplifying the deflection of the dome (increasing the radius of curvature of the deformed dome and reducing the buckling resistance), and the geometric and material nonlinearity of the concrete dome. Study of imperfections has shown that imperfections that increase the average radius of curvature in an area the size of an elastic buckle have the highest impact in reducing buckling strength; thus, the problem of buckling of the concrete dome is reducible to the snap-through buckling of a shallow cap equal in size to an elastic buckle of the dome. In this paper, the buckling of a shallow cap subjected to gravity and seismic load combinations is determined using nonlinear geometry, material nonlinearity of concrete (accounting for softening and cracking in tension and microcracking and crushing in compression), and time-dependent creep and shrinkage of concrete. The analysis is performed in three steps: in the first step, the cap is analyzed for gravity loads; in the second step, the cap is analyzed for the effects of creep and shrinkage strains; and in the third step, the earthquake load is applied until the snap-through buckling occurs. The analysis was carried out on a set of domes designed for gravity load combinations alone. These domes cover the extremes of size and rise of the domes that are currently constructed over prestressed concrete tanks. The results show that the majority of existing domes that are not in high-seismicity zones and are designed for gravity load combinations have capacity for earthquake loading. The results are also of value in the design of new domes for load combinations that include earthquake loading.
    publisherASCE
    titleBuckling of Shallow Spherical Concrete Domes under Gravity and Earthquake Loads
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002595
    page04020053
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian