YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Buckling Restrained Sizing and Shape Optimization of Truss Structures

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    T. Venkatesh Varma
    ,
    Saikat Sarkar
    ,
    Goutam Mondal
    DOI: 10.1061/(ASCE)ST.1943-541X.0002590
    Publisher: ASCE
    Abstract: An integrated strategy for sizing and shape optimization of truss structures, taking buckling constraints implicitly into truss design, is demonstrated here. Because the associated objective functional is not convex, a derivative-free directionality-based global optimization scheme is adopted. As required by the problem, the change of measure–based evolutionary optimization (COMBEO) optimization scheme is appropriately enhanced in this work to incorporate complex inequality constraints without affording any violation. The applied scheme arrests buckling through a forward model via capturing geometric nonlinear responses of the structure. For this purpose, each truss element is modeled using two corotational beam elements with moment releases at hinged ends. Local and global imperfections are introduced to induce buckling of a single member and global buckling of the structure, respectively. These imperfections are randomly generated using Gaussian distribution to arrive at a resilient structure. While past research used large numbers of buckling constraints explicitly to optimize truss weight, the proposed scheme eliminates the same by adding buckling implicitly in the forward model. Present formalism also includes capturing nonlinear responses of the structure to eliminate structural failure due to geometric nonlinearity. Robustness of the proposed scheme is demonstrated extensively using four different types of trusses. The proposed formalism can be used to solve many other structural optimization problems involving geometric nonlinearity and imperfections.
    • Download: (772.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Buckling Restrained Sizing and Shape Optimization of Truss Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266625
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorT. Venkatesh Varma
    contributor authorSaikat Sarkar
    contributor authorGoutam Mondal
    date accessioned2022-01-30T20:10:06Z
    date available2022-01-30T20:10:06Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002590.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266625
    description abstractAn integrated strategy for sizing and shape optimization of truss structures, taking buckling constraints implicitly into truss design, is demonstrated here. Because the associated objective functional is not convex, a derivative-free directionality-based global optimization scheme is adopted. As required by the problem, the change of measure–based evolutionary optimization (COMBEO) optimization scheme is appropriately enhanced in this work to incorporate complex inequality constraints without affording any violation. The applied scheme arrests buckling through a forward model via capturing geometric nonlinear responses of the structure. For this purpose, each truss element is modeled using two corotational beam elements with moment releases at hinged ends. Local and global imperfections are introduced to induce buckling of a single member and global buckling of the structure, respectively. These imperfections are randomly generated using Gaussian distribution to arrive at a resilient structure. While past research used large numbers of buckling constraints explicitly to optimize truss weight, the proposed scheme eliminates the same by adding buckling implicitly in the forward model. Present formalism also includes capturing nonlinear responses of the structure to eliminate structural failure due to geometric nonlinearity. Robustness of the proposed scheme is demonstrated extensively using four different types of trusses. The proposed formalism can be used to solve many other structural optimization problems involving geometric nonlinearity and imperfections.
    publisherASCE
    titleBuckling Restrained Sizing and Shape Optimization of Truss Structures
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002590
    page04020048
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian