YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Tropical Cyclone Wind Speed when Considering Climate Change

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Haiwei Xu
    ,
    Ning Lin
    ,
    Mingfeng Huang
    ,
    Wenjuan Lou
    DOI: 10.1061/(ASCE)ST.1943-541X.0002585
    Publisher: ASCE
    Abstract: This paper investigated the evolution of tropical cyclone (TC) wind threat from the past into the future and discussed its implications for the building code specifications for two vulnerable coastal cities (Hangzhou and Shanghai) in China. Large samples of synthetic TCs were generated from reanalysis data and climate-model projections over the years 1979–2098. The synthetic data were evaluated with terrain-corrected historical TC wind speed data. Extreme value analysis was applied to the generated data set to estimate the return period of extreme winds. Most climate models considered (five of six) projected that the return period of TC winds for Hangzhou and Shanghai would significantly decrease over the 21st century. Because the traditional return-period-targeted estimation of the design wind speed is no longer appropriate in the context of a nonstationary climate, an alternative method based on the lifetime exceedance probability (LEP) was proposed to estimate the design wind speed. Most climate models considered (five of six) yielded significantly larger design wind speeds than the traditional stationary method, attributable to both projected increase in TC activity in the future climate and the applied nonstationary LEP method. The code-recommended design wind speeds for Shanghai and Hangzhou are smaller than the climatic design wind speeds projected by some (three of six) climate models considered in this study.
    • Download: (3.344Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Tropical Cyclone Wind Speed when Considering Climate Change

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266620
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorHaiwei Xu
    contributor authorNing Lin
    contributor authorMingfeng Huang
    contributor authorWenjuan Lou
    date accessioned2022-01-30T20:09:50Z
    date available2022-01-30T20:09:50Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002585.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266620
    description abstractThis paper investigated the evolution of tropical cyclone (TC) wind threat from the past into the future and discussed its implications for the building code specifications for two vulnerable coastal cities (Hangzhou and Shanghai) in China. Large samples of synthetic TCs were generated from reanalysis data and climate-model projections over the years 1979–2098. The synthetic data were evaluated with terrain-corrected historical TC wind speed data. Extreme value analysis was applied to the generated data set to estimate the return period of extreme winds. Most climate models considered (five of six) projected that the return period of TC winds for Hangzhou and Shanghai would significantly decrease over the 21st century. Because the traditional return-period-targeted estimation of the design wind speed is no longer appropriate in the context of a nonstationary climate, an alternative method based on the lifetime exceedance probability (LEP) was proposed to estimate the design wind speed. Most climate models considered (five of six) yielded significantly larger design wind speeds than the traditional stationary method, attributable to both projected increase in TC activity in the future climate and the applied nonstationary LEP method. The code-recommended design wind speeds for Shanghai and Hangzhou are smaller than the climatic design wind speeds projected by some (three of six) climate models considered in this study.
    publisherASCE
    titleDesign Tropical Cyclone Wind Speed when Considering Climate Change
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002585
    page04020063
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian