YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wind-Induced Hazard Assessment for Low-Rise Building Envelope Considering Potential Openings

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 004
    Author:
    Xiaowen Ji
    ,
    Guoqing Huang
    ,
    Fengbo Wu
    ,
    Zhao-Hui Lu
    DOI: 10.1061/(ASCE)ST.1943-541X.0002553
    Publisher: ASCE
    Abstract: The light-frame low-rise buildings widely used for residential and industrial purposes are very vulnerable to high winds. Postdisaster surveys indicated that envelope components such as windows, doors, and roof sheathings suffer significant damages due to wind loads and windborne debris. Typically, the wind-induced damage process for a low-rise building is progressive with stochastic openings on the envelope. In this study, this progressive damage process is simplified as three stages, i.e., the nominally sealed building with background leakage, the partially enclosed building with multiple openings on walls, and the loss of roof sheathings. Based on this aforementioned three-stage process, a probabilistic wind-induced hazard assessment framework for the light-frame low-rise building envelope is developed. Specifically, two approaches, including the Monte Carlo simulation–based approach and the law of the total probability–based approach, are developed for hazard assessments of roof sheathings with the consideration of all potential opening conditions. A numerical example is adopted to illustrate the proposed framework. Results show that these two approaches assessing the wind-induced hazard for a low-rise building envelope are in good agreement, and the latter approach has an efficiency advantage.
    • Download: (1.826Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wind-Induced Hazard Assessment for Low-Rise Building Envelope Considering Potential Openings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266586
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorXiaowen Ji
    contributor authorGuoqing Huang
    contributor authorFengbo Wu
    contributor authorZhao-Hui Lu
    date accessioned2022-01-30T20:08:33Z
    date available2022-01-30T20:08:33Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002553.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266586
    description abstractThe light-frame low-rise buildings widely used for residential and industrial purposes are very vulnerable to high winds. Postdisaster surveys indicated that envelope components such as windows, doors, and roof sheathings suffer significant damages due to wind loads and windborne debris. Typically, the wind-induced damage process for a low-rise building is progressive with stochastic openings on the envelope. In this study, this progressive damage process is simplified as three stages, i.e., the nominally sealed building with background leakage, the partially enclosed building with multiple openings on walls, and the loss of roof sheathings. Based on this aforementioned three-stage process, a probabilistic wind-induced hazard assessment framework for the light-frame low-rise building envelope is developed. Specifically, two approaches, including the Monte Carlo simulation–based approach and the law of the total probability–based approach, are developed for hazard assessments of roof sheathings with the consideration of all potential opening conditions. A numerical example is adopted to illustrate the proposed framework. Results show that these two approaches assessing the wind-induced hazard for a low-rise building envelope are in good agreement, and the latter approach has an efficiency advantage.
    publisherASCE
    titleWind-Induced Hazard Assessment for Low-Rise Building Envelope Considering Potential Openings
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002553
    page04020039
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian