YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fastened Aluminum-Lipped Channel Sections Subjected to Web Crippling under Two-Flange Loading Conditions: Experimental Study

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 004
    Author:
    Husam Alsanat
    ,
    Shanmuganathan Gunalan
    ,
    Keerthan Poologanathan
    ,
    Hong Guan
    ,
    Charalampos Baniotopoulos
    DOI: 10.1061/(ASCE)ST.1943-541X.0002550
    Publisher: ASCE
    Abstract: Thin-walled members in structural systems are highly vulnerable to buckling instabilities, including web crippling. Aluminum alloy members are more prone to this kind of failure due to their relatively low elastic moduli. As shown in the existing literature, limited research has been performed to investigate the web crippling failure of aluminum members. This paper presents the details of an experimental investigation conducted to study the web crippling phenomenon of fastened (restrained flanges) aluminum-lipped channel (ALC) sections. Two loading conditions, end-two-flange and interior-two-flange loading, were considered. Two series of 40 tests were performed using roll-formed aluminum alloy 5052 H36 specimens with different web slenderness and load-bearing lengths. A comparison between the ultimate capacities of the web crippling tests and the predictions from the currently available design rules was performed. The results show that the current web crippling design rules are mostly unsafe and unreliable for fastened ALC sections. Thus, a modified equation is needed to closely and accurately estimate the web crippling strengths for fastened ALC sections under two-flange loading conditions. Furthermore, the effect of restrained flanges on the web crippling mechanism is discussed in detail. It was observed that fastening the flanges considerably strengthened the section web crippling capacity. Hence, a new prediction approach was developed to estimate the increase of the web crippling capacity due to flange restraining.
    • Download: (2.990Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fastened Aluminum-Lipped Channel Sections Subjected to Web Crippling under Two-Flange Loading Conditions: Experimental Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266582
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorHusam Alsanat
    contributor authorShanmuganathan Gunalan
    contributor authorKeerthan Poologanathan
    contributor authorHong Guan
    contributor authorCharalampos Baniotopoulos
    date accessioned2022-01-30T20:08:28Z
    date available2022-01-30T20:08:28Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002550.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266582
    description abstractThin-walled members in structural systems are highly vulnerable to buckling instabilities, including web crippling. Aluminum alloy members are more prone to this kind of failure due to their relatively low elastic moduli. As shown in the existing literature, limited research has been performed to investigate the web crippling failure of aluminum members. This paper presents the details of an experimental investigation conducted to study the web crippling phenomenon of fastened (restrained flanges) aluminum-lipped channel (ALC) sections. Two loading conditions, end-two-flange and interior-two-flange loading, were considered. Two series of 40 tests were performed using roll-formed aluminum alloy 5052 H36 specimens with different web slenderness and load-bearing lengths. A comparison between the ultimate capacities of the web crippling tests and the predictions from the currently available design rules was performed. The results show that the current web crippling design rules are mostly unsafe and unreliable for fastened ALC sections. Thus, a modified equation is needed to closely and accurately estimate the web crippling strengths for fastened ALC sections under two-flange loading conditions. Furthermore, the effect of restrained flanges on the web crippling mechanism is discussed in detail. It was observed that fastening the flanges considerably strengthened the section web crippling capacity. Hence, a new prediction approach was developed to estimate the increase of the web crippling capacity due to flange restraining.
    publisherASCE
    titleFastened Aluminum-Lipped Channel Sections Subjected to Web Crippling under Two-Flange Loading Conditions: Experimental Study
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002550
    page04020023
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian