YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Characterization of Ultralow-Cycle Fatigue Behavior of Steel Castings

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Chiyun Zhong
    ,
    Justin Binder
    ,
    Oh-Sung Kwon
    ,
    Constantin Christopoulos
    DOI: 10.1061/(ASCE)ST.1943-541X.0002497
    Publisher: ASCE
    Abstract: Steel castings have been increasingly used in building construction to enhance the seismic resistance of structures. Such castings are designed as yielding fuses that dissipate energy through large inelastic deformations, while the rest of the structure remains mainly elastic. Typically, the governing ultimate limit state of these yielding fuses is their ultralow-cycle fatigue (ULCF) life. This paper presents tests and finite-element analyses of small-scale coupons and full-scale tests of a variety of cast steel yielding connectors—devices that dissipate seismic energy through the inelastic deformation of cast steel triangular yielding fingers. This paper presents results of modeling improvements over previous numerical models of yielding connectors, an optimized material calibration procedure using an automated optimization algorithm and a device-specific ULCF model calibration process, the use of the stress-weighted damage model for fracture prediction that considers the Lode parameter along with the stress triaxiality, and an improved bolt friction model. These enhanced analyses provided good predictions of the onset of failure in full-scale steel castings across various specimen sizes and loading histories.
    • Download: (3.654Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Characterization of Ultralow-Cycle Fatigue Behavior of Steel Castings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266524
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorChiyun Zhong
    contributor authorJustin Binder
    contributor authorOh-Sung Kwon
    contributor authorConstantin Christopoulos
    date accessioned2022-01-30T20:06:16Z
    date available2022-01-30T20:06:16Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002497.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266524
    description abstractSteel castings have been increasingly used in building construction to enhance the seismic resistance of structures. Such castings are designed as yielding fuses that dissipate energy through large inelastic deformations, while the rest of the structure remains mainly elastic. Typically, the governing ultimate limit state of these yielding fuses is their ultralow-cycle fatigue (ULCF) life. This paper presents tests and finite-element analyses of small-scale coupons and full-scale tests of a variety of cast steel yielding connectors—devices that dissipate seismic energy through the inelastic deformation of cast steel triangular yielding fingers. This paper presents results of modeling improvements over previous numerical models of yielding connectors, an optimized material calibration procedure using an automated optimization algorithm and a device-specific ULCF model calibration process, the use of the stress-weighted damage model for fracture prediction that considers the Lode parameter along with the stress triaxiality, and an improved bolt friction model. These enhanced analyses provided good predictions of the onset of failure in full-scale steel castings across various specimen sizes and loading histories.
    publisherASCE
    titleExperimental and Numerical Characterization of Ultralow-Cycle Fatigue Behavior of Steel Castings
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002497
    page04019195
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian