YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Incorporating the Effects of Climate Change into Bridge Deterioration Modeling: The Case of Slab-on-Girder Highway Bridge Deck Designs across Canada

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 007
    Author:
    Geoffrey Guest
    ,
    Jieying Zhang
    ,
    Rebecca Atadero
    ,
    Hamidreza Shirkhani
    DOI: 10.1061/(ASCE)MT.1943-5533.0003245
    Publisher: ASCE
    Abstract: Climate change is expected to impact both the operational and structural performance of infrastructure such as buildings, roads, and bridges. However, infrastructure design guides widely rely on historical climate data, if any, for informing design requirements. The goal of this research was to explore a methodology for modeling bridge deck design against corrosion attack in a changing climate. Three deterioration stages were simulated to understand the time to deck failure. Corrosion initiation of reinforcing steel was considered by utilizing a deterministic diffusion-based model predicting the time to reinforcement corrosion initiation. Crack initiation and crack growth were also simulated using mechanistic approaches to illustrate the sensitivity of bridge deck deterioration and design service life to changes in bridge deck design and a changing climate across major cities in Canada. The findings indicate that a changing climate has the potential to significantly alter the service life of a bridge deck, but the effect is strongly dependent on the durability design of the bridge deck. It is recommended that bridge designers strive to utilize mechanistic-empirical models that incorporate high-resolution climate data as inputs for better understanding changes in deterioration as a consequence of a nonstationary climate.
    • Download: (925.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Incorporating the Effects of Climate Change into Bridge Deterioration Modeling: The Case of Slab-on-Girder Highway Bridge Deck Designs across Canada

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266368
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorGeoffrey Guest
    contributor authorJieying Zhang
    contributor authorRebecca Atadero
    contributor authorHamidreza Shirkhani
    date accessioned2022-01-30T20:00:52Z
    date available2022-01-30T20:00:52Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0003245.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266368
    description abstractClimate change is expected to impact both the operational and structural performance of infrastructure such as buildings, roads, and bridges. However, infrastructure design guides widely rely on historical climate data, if any, for informing design requirements. The goal of this research was to explore a methodology for modeling bridge deck design against corrosion attack in a changing climate. Three deterioration stages were simulated to understand the time to deck failure. Corrosion initiation of reinforcing steel was considered by utilizing a deterministic diffusion-based model predicting the time to reinforcement corrosion initiation. Crack initiation and crack growth were also simulated using mechanistic approaches to illustrate the sensitivity of bridge deck deterioration and design service life to changes in bridge deck design and a changing climate across major cities in Canada. The findings indicate that a changing climate has the potential to significantly alter the service life of a bridge deck, but the effect is strongly dependent on the durability design of the bridge deck. It is recommended that bridge designers strive to utilize mechanistic-empirical models that incorporate high-resolution climate data as inputs for better understanding changes in deterioration as a consequence of a nonstationary climate.
    publisherASCE
    titleIncorporating the Effects of Climate Change into Bridge Deterioration Modeling: The Case of Slab-on-Girder Highway Bridge Deck Designs across Canada
    typeJournal Paper
    journal volume32
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003245
    page04020175
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian