YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laboratory Evaluation of the Effects of Long-Term Aging on High-Content Polymer-Modified Asphalt Binder

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 007
    Author:
    Peng Lin
    ,
    Weidong Huang
    ,
    Xueyan Liu
    ,
    Panos Apostolids
    ,
    Haopeng Wang
    ,
    Chuanqi Yan
    DOI: 10.1061/(ASCE)MT.1943-5533.0003208
    Publisher: ASCE
    Abstract: One of the most widely used polymer-based modifiers in asphalt binders is styrene–butadiene–styrene (SBS), which results in binders of increased modulus, strength, toughness, and resistance to permanent deformation. These properties are further improved with the increase of SBS polymer content in asphalt binders, producing binders such as high-content polymer-modified asphalt (HCPMA). Although the HCPMA binders commonly are used in porous asphalt pavements, limited research has been conducted on their aging performance. This paper used gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, and the dynamic shear rheometer (DSR) to explore the evolution of chemical and rheological properties of aging HCPMA binders. The study found that the aging of HCPMA is a combination of oxidation of the base asphalt binder and degradation of the SBS polymer, leading to modulus increase and phase angle decrease. The degradation of SBS happened mostly at the beginning and slowed after pressure-aging vessel (PAV) conditioning for 20 h, which resulted in the lowest rutting resistance of HCPMA binders. When SBS content was higher than 7.5%, more than half the SBS polymer remained after 80 h of PAV conditioning. Although the molecular weight of SBS decreased from 230,000 to 70,000 due to degradation, its modification effect was still significant. Moreover, high modification of SBS can retard the oxidation and hardening of base asphalt binder, especially after PAV conditioning for 20 h. Principal component analysis showed that 10 parameters used in this study could be explained by SBS content and asphalt binder aging extent. Based on PCA results, the complex modulus (G*) and phase angle (δ) of HCPMA binders can be well fitted by the exponential function of SBS content and aging index.
    • Download: (4.981Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laboratory Evaluation of the Effects of Long-Term Aging on High-Content Polymer-Modified Asphalt Binder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266330
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorPeng Lin
    contributor authorWeidong Huang
    contributor authorXueyan Liu
    contributor authorPanos Apostolids
    contributor authorHaopeng Wang
    contributor authorChuanqi Yan
    date accessioned2022-01-30T19:59:29Z
    date available2022-01-30T19:59:29Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0003208.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266330
    description abstractOne of the most widely used polymer-based modifiers in asphalt binders is styrene–butadiene–styrene (SBS), which results in binders of increased modulus, strength, toughness, and resistance to permanent deformation. These properties are further improved with the increase of SBS polymer content in asphalt binders, producing binders such as high-content polymer-modified asphalt (HCPMA). Although the HCPMA binders commonly are used in porous asphalt pavements, limited research has been conducted on their aging performance. This paper used gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, and the dynamic shear rheometer (DSR) to explore the evolution of chemical and rheological properties of aging HCPMA binders. The study found that the aging of HCPMA is a combination of oxidation of the base asphalt binder and degradation of the SBS polymer, leading to modulus increase and phase angle decrease. The degradation of SBS happened mostly at the beginning and slowed after pressure-aging vessel (PAV) conditioning for 20 h, which resulted in the lowest rutting resistance of HCPMA binders. When SBS content was higher than 7.5%, more than half the SBS polymer remained after 80 h of PAV conditioning. Although the molecular weight of SBS decreased from 230,000 to 70,000 due to degradation, its modification effect was still significant. Moreover, high modification of SBS can retard the oxidation and hardening of base asphalt binder, especially after PAV conditioning for 20 h. Principal component analysis showed that 10 parameters used in this study could be explained by SBS content and asphalt binder aging extent. Based on PCA results, the complex modulus (G*) and phase angle (δ) of HCPMA binders can be well fitted by the exponential function of SBS content and aging index.
    publisherASCE
    titleLaboratory Evaluation of the Effects of Long-Term Aging on High-Content Polymer-Modified Asphalt Binder
    typeJournal Paper
    journal volume32
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003208
    page04020157
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian