YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Behavior of Sandwich Beams with Flax Fiber–Reinforced Polymer Faces and Cardboard Cores under Monotonic and Impact Loads

    Source: Journal of Architectural Engineering:;2020:;Volume ( 026 ):;issue: 002
    Author:
    Dillon Betts
    ,
    Pedram Sadeghian
    ,
    Amir Fam
    DOI: 10.1061/(ASCE)AE.1943-5568.0000409
    Publisher: ASCE
    Abstract: To meet the ever-increasing demand for more environmentally conscious building designs, it is important that sustainable building material options be available. Natural and recycled materials can be used in sandwich panels to reduce their environmental footprint. This study featured experiments with 12 sandwich beams constructed with flax fiber–reinforced polymer (FFRP) faces and recycled corrugated cardboard cores under monotonic and impact loading. Each sandwich beam was 1,200 mm long and 150 mm wide, and was constructed of two-layer FFRP faces and a 75-mm-thick corrugated cardboard core. Six specimens were prepared using a plain cardboard core and six with a waxed cardboard core. Two separate test methods were employed in this study: a three-point bending test and a drop-weight impact test. Three specimens of each type with a span length of 1,120 mm of each type were tested under monotonic load. The load was applied through a 150-mm-wide steel hollow structural section (HSS) and was measured with a 250 kN load cell. The midspan deflection was measured with a string potentiometer, and the strains in the top and bottom faces at midspan were measured using strain gauges. The monotonic test data were recorded at a rate of 10 Hz. Three specimens of each type were tested under a drop-weight impact load. The drop weight was applied to the midspan. To match the monotonic tests, the drop weight was affixed with a 150 mm HSS loading surface. The midspan displacement was measured with a fast-action string potentiometer, and the midspan face strains were measured using strain gauges. The impact data were recorded at a rate of 25 kHz. In addition, each impact test was filmed with high-speed video (500 frames per second). The residual monotonic flexural behavior after impact was also investigated for specimens that survived the impact testing (that is, they were additionally tested under monotonic three-point bending). The results of the tests were compared with the results of similar tests on sandwich beams with conventional petroleum-based foam cores and showed that the cardboard core beams behaved similarly to the foam core beams. It was determined that core manufacturing and specimen preparation had a significant effect on the overall specimen behavior and potentially caused premature failure in some of the tests. The residual monotonic tests of the specimens after impact showed that there was no significant reduction in specimen strength or stiffness after an impact event. Existing models used for predicting the behavior of foam-core FFRP sandwich beams were used to predict the behavior of the cardboard specimens tested in this study.
    • Download: (1.607Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Behavior of Sandwich Beams with Flax Fiber–Reinforced Polymer Faces and Cardboard Cores under Monotonic and Impact Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266284
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorDillon Betts
    contributor authorPedram Sadeghian
    contributor authorAmir Fam
    date accessioned2022-01-30T19:57:44Z
    date available2022-01-30T19:57:44Z
    date issued2020
    identifier other%28ASCE%29AE.1943-5568.0000409.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266284
    description abstractTo meet the ever-increasing demand for more environmentally conscious building designs, it is important that sustainable building material options be available. Natural and recycled materials can be used in sandwich panels to reduce their environmental footprint. This study featured experiments with 12 sandwich beams constructed with flax fiber–reinforced polymer (FFRP) faces and recycled corrugated cardboard cores under monotonic and impact loading. Each sandwich beam was 1,200 mm long and 150 mm wide, and was constructed of two-layer FFRP faces and a 75-mm-thick corrugated cardboard core. Six specimens were prepared using a plain cardboard core and six with a waxed cardboard core. Two separate test methods were employed in this study: a three-point bending test and a drop-weight impact test. Three specimens of each type with a span length of 1,120 mm of each type were tested under monotonic load. The load was applied through a 150-mm-wide steel hollow structural section (HSS) and was measured with a 250 kN load cell. The midspan deflection was measured with a string potentiometer, and the strains in the top and bottom faces at midspan were measured using strain gauges. The monotonic test data were recorded at a rate of 10 Hz. Three specimens of each type were tested under a drop-weight impact load. The drop weight was applied to the midspan. To match the monotonic tests, the drop weight was affixed with a 150 mm HSS loading surface. The midspan displacement was measured with a fast-action string potentiometer, and the midspan face strains were measured using strain gauges. The impact data were recorded at a rate of 25 kHz. In addition, each impact test was filmed with high-speed video (500 frames per second). The residual monotonic flexural behavior after impact was also investigated for specimens that survived the impact testing (that is, they were additionally tested under monotonic three-point bending). The results of the tests were compared with the results of similar tests on sandwich beams with conventional petroleum-based foam cores and showed that the cardboard core beams behaved similarly to the foam core beams. It was determined that core manufacturing and specimen preparation had a significant effect on the overall specimen behavior and potentially caused premature failure in some of the tests. The residual monotonic tests of the specimens after impact showed that there was no significant reduction in specimen strength or stiffness after an impact event. Existing models used for predicting the behavior of foam-core FFRP sandwich beams were used to predict the behavior of the cardboard specimens tested in this study.
    publisherASCE
    titleStructural Behavior of Sandwich Beams with Flax Fiber–Reinforced Polymer Faces and Cardboard Cores under Monotonic and Impact Loads
    typeJournal Paper
    journal volume26
    journal issue2
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/(ASCE)AE.1943-5568.0000409
    page04020013
    treeJournal of Architectural Engineering:;2020:;Volume ( 026 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian