YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Corrosion Fatigue Crack Propagation Mechanism of High-Strength Steel Bar in Various Environments

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 006
    Author:
    Zhongzhao Guo
    ,
    Yafei Ma
    ,
    Lei Wang
    ,
    Jianren Zhang
    ,
    Issam E. Harik
    DOI: 10.1061/(ASCE)MT.1943-5533.0003165
    Publisher: ASCE
    Abstract: This paper investigated the corrosion fatigue crack propagation mechanism of high-strength steel bar HRB400 in various corrosive environments. Fatigue crack growth (FCG) tests were conducted under different fatigue loading types, environments, and stress ratios. The fatigue loading type included the constant and stepwise decreasing load amplitude. The environments were air, distilled water, 3.5% NaCl solution, and an artificially accelerated corrosive environment. The stress ratio ranged from 0.1 to 0.7. The threshold stress-intensity factor range and FCG rate under various test conditions were obtained. The FCG path and fracture morphology were examined by optical microscopy and scanning electron microscopy, respectively. The threshold stress-intensity factor ranges, FCG rates, FCG paths, and fracture features under different conditions were compared. The corrosion fatigue mechanism of the steel bar under the test environments were quantitatively analyzed. The results showed that hydrogen embrittlement played a predominant role in the corrosion fatigue process of the HRB400 steel bar. The contribution of anodic dissolution to the FCG rate increased as the aggressiveness level increased. The contribution of hydrogen embrittlement to the FCG rate increased with the increase of stress ratio and stress-intensity factor range.
    • Download: (3.263Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Corrosion Fatigue Crack Propagation Mechanism of High-Strength Steel Bar in Various Environments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266283
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZhongzhao Guo
    contributor authorYafei Ma
    contributor authorLei Wang
    contributor authorJianren Zhang
    contributor authorIssam E. Harik
    date accessioned2022-01-30T19:57:41Z
    date available2022-01-30T19:57:41Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0003165.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266283
    description abstractThis paper investigated the corrosion fatigue crack propagation mechanism of high-strength steel bar HRB400 in various corrosive environments. Fatigue crack growth (FCG) tests were conducted under different fatigue loading types, environments, and stress ratios. The fatigue loading type included the constant and stepwise decreasing load amplitude. The environments were air, distilled water, 3.5% NaCl solution, and an artificially accelerated corrosive environment. The stress ratio ranged from 0.1 to 0.7. The threshold stress-intensity factor range and FCG rate under various test conditions were obtained. The FCG path and fracture morphology were examined by optical microscopy and scanning electron microscopy, respectively. The threshold stress-intensity factor ranges, FCG rates, FCG paths, and fracture features under different conditions were compared. The corrosion fatigue mechanism of the steel bar under the test environments were quantitatively analyzed. The results showed that hydrogen embrittlement played a predominant role in the corrosion fatigue process of the HRB400 steel bar. The contribution of anodic dissolution to the FCG rate increased as the aggressiveness level increased. The contribution of hydrogen embrittlement to the FCG rate increased with the increase of stress ratio and stress-intensity factor range.
    publisherASCE
    titleCorrosion Fatigue Crack Propagation Mechanism of High-Strength Steel Bar in Various Environments
    typeJournal Paper
    journal volume32
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003165
    page04020115
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian