YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Characterization to Examine the Effects of Aggregate Properties on Aggregate-Paste Interphase in Cement Concrete Mixtures

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 004
    Author:
    Mahdieh Khedmati
    ,
    Yong-Rak Kim
    DOI: 10.1061/(ASCE)MT.1943-5533.0003106
    Publisher: ASCE
    Abstract: This study aims to test the effects of aggregate properties on the features of aggregate-paste interphase in portland cement concrete mixtures. The microstructural, chemical, and nanomechanical properties of the interphase region, formed because of the interaction of two commonly used chemically-distinctive aggregates (i.e., limestone as a calcite aggregate and quartzite as a siliceous aggregate) with ordinary portland cement paste, were examined through multiscale measurements. More specifically, the microstructural, chemical, and nanomechanical properties at the interphase zone were characterized using laser scanning microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, and nanoindentation. Furthermore, a three-point bending test was used to evaluate the bond between the aggregate and paste on single edge notched beam specimen where a thin aggregate sheet was inserted. A coupled microstructural, mechanical, and chemical examination can provide integrated characterization of an interphase region formed by different aggregate properties. It was found that the thickness of interfacial debonding between aggregate and paste is more dominantly influenced by moisture absorption capacity, while the surface chemistry of the aggregates did not significantly affect the characteristics of the interphase. It was also observed that when there is a good bonding between aggregate and paste, ample calcium silicate hydrate (C─ S─ H) gel is formed close to the aggregate surface, which is demonstrated by similar Ca/Si ratios between the interphase region and adjacent paste region. On the other hand, poor interphase and resulting interfacial debonding was associated with more involvement of CH crystals at the interphase region, which was observed by greater Ca/Si ratios.
    • Download: (3.008Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Characterization to Examine the Effects of Aggregate Properties on Aggregate-Paste Interphase in Cement Concrete Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266221
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMahdieh Khedmati
    contributor authorYong-Rak Kim
    date accessioned2022-01-30T19:55:39Z
    date available2022-01-30T19:55:39Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0003106.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266221
    description abstractThis study aims to test the effects of aggregate properties on the features of aggregate-paste interphase in portland cement concrete mixtures. The microstructural, chemical, and nanomechanical properties of the interphase region, formed because of the interaction of two commonly used chemically-distinctive aggregates (i.e., limestone as a calcite aggregate and quartzite as a siliceous aggregate) with ordinary portland cement paste, were examined through multiscale measurements. More specifically, the microstructural, chemical, and nanomechanical properties at the interphase zone were characterized using laser scanning microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, and nanoindentation. Furthermore, a three-point bending test was used to evaluate the bond between the aggregate and paste on single edge notched beam specimen where a thin aggregate sheet was inserted. A coupled microstructural, mechanical, and chemical examination can provide integrated characterization of an interphase region formed by different aggregate properties. It was found that the thickness of interfacial debonding between aggregate and paste is more dominantly influenced by moisture absorption capacity, while the surface chemistry of the aggregates did not significantly affect the characteristics of the interphase. It was also observed that when there is a good bonding between aggregate and paste, ample calcium silicate hydrate (C─ S─ H) gel is formed close to the aggregate surface, which is demonstrated by similar Ca/Si ratios between the interphase region and adjacent paste region. On the other hand, poor interphase and resulting interfacial debonding was associated with more involvement of CH crystals at the interphase region, which was observed by greater Ca/Si ratios.
    publisherASCE
    titleMultiscale Characterization to Examine the Effects of Aggregate Properties on Aggregate-Paste Interphase in Cement Concrete Mixtures
    typeJournal Paper
    journal volume32
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003106
    page04020059
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian