YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterization of Crude Bacterial Urease for CaCO3 Precipitation and Cementation of Silty Sand

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 005
    Author:
    Jia He
    ,
    Yufeng Gao
    ,
    Zhangxiang Gu
    ,
    Jian Chu
    ,
    Liya Wang
    DOI: 10.1061/(ASCE)MT.1943-5533.0003100
    Publisher: ASCE
    Abstract: Biocementation catalyzed by ureolytic bacteria or enzyme urease is a promising technique for the treatment of liquefiable soil. Silty sand is often encountered in natural conditions and is often prone to earthquake liquefaction. However, the applicability of the biocementation to silty sand is still a challenge. In this study, we proposed and tested a new method of applying the biocementation to silty sand. In this method, crude urease obtained from the lysis of ureolytic bacteria was used for the soil treatment instead of using live bacteria directly. It was found that crude urease could be successfully obtained from bacteria using the ultrasonic cell lysis method. The activity of the crude urease was relatively high in 0.01–1  mol/L of urea concentrations and 5–11 pH values and increased in temperature in the tested range (10°C–50°C). The results of the CaCO3 precipitation reaction tests showed that crude urease was capable of hydrolyzing urea and could be used in the biocementation treatment when the initial urea concentration was not higher than 0.5  mol/L. Triaxial consolidated undrained tests and CaCO3 content measurements were conducted on the silty sand samples treated by either urease or live bacteria. Silty sand samples treated by urease had higher shear strengths and more dilative stress-strain responses during the undrained shear as compared with the samples treated by live bacteria. In the bacteria-treated samples, CaCO3 was prone to accumulating at the injection side of the samples, while the treatment using crude urease can alleviate such a problem by showing higher CaCO3 contents at farther locations of the samples.
    • Download: (490.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterization of Crude Bacterial Urease for CaCO3 Precipitation and Cementation of Silty Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266215
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJia He
    contributor authorYufeng Gao
    contributor authorZhangxiang Gu
    contributor authorJian Chu
    contributor authorLiya Wang
    date accessioned2022-01-30T19:55:22Z
    date available2022-01-30T19:55:22Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0003100.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266215
    description abstractBiocementation catalyzed by ureolytic bacteria or enzyme urease is a promising technique for the treatment of liquefiable soil. Silty sand is often encountered in natural conditions and is often prone to earthquake liquefaction. However, the applicability of the biocementation to silty sand is still a challenge. In this study, we proposed and tested a new method of applying the biocementation to silty sand. In this method, crude urease obtained from the lysis of ureolytic bacteria was used for the soil treatment instead of using live bacteria directly. It was found that crude urease could be successfully obtained from bacteria using the ultrasonic cell lysis method. The activity of the crude urease was relatively high in 0.01–1  mol/L of urea concentrations and 5–11 pH values and increased in temperature in the tested range (10°C–50°C). The results of the CaCO3 precipitation reaction tests showed that crude urease was capable of hydrolyzing urea and could be used in the biocementation treatment when the initial urea concentration was not higher than 0.5  mol/L. Triaxial consolidated undrained tests and CaCO3 content measurements were conducted on the silty sand samples treated by either urease or live bacteria. Silty sand samples treated by urease had higher shear strengths and more dilative stress-strain responses during the undrained shear as compared with the samples treated by live bacteria. In the bacteria-treated samples, CaCO3 was prone to accumulating at the injection side of the samples, while the treatment using crude urease can alleviate such a problem by showing higher CaCO3 contents at farther locations of the samples.
    publisherASCE
    titleCharacterization of Crude Bacterial Urease for CaCO3 Precipitation and Cementation of Silty Sand
    typeJournal Paper
    journal volume32
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003100
    page04020071
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian