YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluating Laboratory Tests for Use in Specifications for Unbound Base Course Materials

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 004
    Author:
    Munir D. Nazzal
    ,
    Louay N. Mohammad
    ,
    Aaron Austin
    DOI: 10.1061/(ASCE)MT.1943-5533.0003042
    Publisher: ASCE
    Abstract: A key requirement for performance-based specification for pavement materials is the selection of laboratory tests that can predict their response under conditions similar to those encountered in the field. This paper presents the results of a study that was conducted to evaluate the capability of different laboratory tests to predict the behavior of unbound granular base course materials under cyclic traffic loading. To achieve this objective, a laboratory testing program was conducted on three types of unbound granular base course materials, namely limestone, sandstone, and granite. The laboratory testing program included conducting a static triaxial test as well as three types of repeated load triaxial (RLT) tests on the materials considered at their optimum field compaction conditions. The three types of RLT tests considered included: resilient modulus, single-stage, and multistage RLT tests. The results of the static triaxial tests showed that the considered materials had similar shear strength properties. However, the RLT test results showed a distinct behavior between those materials, such that the limestone and sandstone exhibited the highest and lowest resilient modulus values, respectively, in the resilient modulus test. In addition, the granite and sandstone accumulated the highest and lowest permanent strain, respectively, in both single-stage and multistage RLT tests. The multistage showed that the granite and limestone experienced the unstable collapse behavior at higher cyclic deviatoric stress than sandstone. In addition, the results demonstrated that the resilient strain behavior was distinct from that of the permanent strain, which indicates that the resilient modulus test cannot be solely used to evaluate the performance of base course materials under cyclic traffic loading. Finally, this study demonstrated that the multistage RLT test provides an important tool to characterize the long-term behavior of a base course material at varying stress conditions. Therefore, it is recommended to use this test in future performance-based specification.
    • Download: (928.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluating Laboratory Tests for Use in Specifications for Unbound Base Course Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266186
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMunir D. Nazzal
    contributor authorLouay N. Mohammad
    contributor authorAaron Austin
    date accessioned2022-01-30T19:54:20Z
    date available2022-01-30T19:54:20Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0003042.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266186
    description abstractA key requirement for performance-based specification for pavement materials is the selection of laboratory tests that can predict their response under conditions similar to those encountered in the field. This paper presents the results of a study that was conducted to evaluate the capability of different laboratory tests to predict the behavior of unbound granular base course materials under cyclic traffic loading. To achieve this objective, a laboratory testing program was conducted on three types of unbound granular base course materials, namely limestone, sandstone, and granite. The laboratory testing program included conducting a static triaxial test as well as three types of repeated load triaxial (RLT) tests on the materials considered at their optimum field compaction conditions. The three types of RLT tests considered included: resilient modulus, single-stage, and multistage RLT tests. The results of the static triaxial tests showed that the considered materials had similar shear strength properties. However, the RLT test results showed a distinct behavior between those materials, such that the limestone and sandstone exhibited the highest and lowest resilient modulus values, respectively, in the resilient modulus test. In addition, the granite and sandstone accumulated the highest and lowest permanent strain, respectively, in both single-stage and multistage RLT tests. The multistage showed that the granite and limestone experienced the unstable collapse behavior at higher cyclic deviatoric stress than sandstone. In addition, the results demonstrated that the resilient strain behavior was distinct from that of the permanent strain, which indicates that the resilient modulus test cannot be solely used to evaluate the performance of base course materials under cyclic traffic loading. Finally, this study demonstrated that the multistage RLT test provides an important tool to characterize the long-term behavior of a base course material at varying stress conditions. Therefore, it is recommended to use this test in future performance-based specification.
    publisherASCE
    titleEvaluating Laboratory Tests for Use in Specifications for Unbound Base Course Materials
    typeJournal Paper
    journal volume32
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003042
    page04020036
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian