YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advanced Quality Control Models for Concrete Admixtures

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 002
    Author:
    Hyungjoo Choi
    ,
    Giri Venkiteela
    ,
    Amedeo Gregori
    ,
    Husam Najm
    DOI: 10.1061/(ASCE)MT.1943-5533.0003024
    Publisher: ASCE
    Abstract: Concrete admixtures are constantly used in construction projects, and these admixtures can be used to increase/decrease the setting time, improve workability, enhance frost and sulfate resistance, and to help control strength development. The quality of admixtures play a crucial role in altering fresh concrete properties. To streamline such quality control process for regular inspections, two key procedures are necessary: (1) collection and maintenance of the baseline approved admixtures quality, and (2) usage of sound analysis tools and procedures for quality verification of newly supplied materials. However, relying on manual comparison by the naked eye makes the identification process very tedious and inaccurate due to similar patterns of admixture infrared spectrophotometry (IR) signatures. Therefore, an efficient and standardized system is necessary for an accurate quality control process. In this study, advanced quality control models are investigated and proposed by utilizing the pattern-recognition methodology using artificial neural networks (ANNs) by utilizing data-driven and self-adaptive functions and other advanced machine-learning techniques for the pattern classification function. The feasibility of the proposed models were evaluated for the automatic quality control process. To identify a mixture’s chemical and physical properties, energy absorption is measured at each wave number through the amount of transmitted infrared light. Developed pattern-recognition ANNs and other machine-learning models have shown their efficiency in learning and identifying the admixtures’ IR signature spectra. Hence, the proposed advanced quality control models can be a very useful tool to determine the admixtures’ quality accurately and quickly and eventually to guarantee their intended performance in altering the concrete’s properties.
    • Download: (1.109Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advanced Quality Control Models for Concrete Admixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266167
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHyungjoo Choi
    contributor authorGiri Venkiteela
    contributor authorAmedeo Gregori
    contributor authorHusam Najm
    date accessioned2022-01-30T19:53:49Z
    date available2022-01-30T19:53:49Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0003024.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266167
    description abstractConcrete admixtures are constantly used in construction projects, and these admixtures can be used to increase/decrease the setting time, improve workability, enhance frost and sulfate resistance, and to help control strength development. The quality of admixtures play a crucial role in altering fresh concrete properties. To streamline such quality control process for regular inspections, two key procedures are necessary: (1) collection and maintenance of the baseline approved admixtures quality, and (2) usage of sound analysis tools and procedures for quality verification of newly supplied materials. However, relying on manual comparison by the naked eye makes the identification process very tedious and inaccurate due to similar patterns of admixture infrared spectrophotometry (IR) signatures. Therefore, an efficient and standardized system is necessary for an accurate quality control process. In this study, advanced quality control models are investigated and proposed by utilizing the pattern-recognition methodology using artificial neural networks (ANNs) by utilizing data-driven and self-adaptive functions and other advanced machine-learning techniques for the pattern classification function. The feasibility of the proposed models were evaluated for the automatic quality control process. To identify a mixture’s chemical and physical properties, energy absorption is measured at each wave number through the amount of transmitted infrared light. Developed pattern-recognition ANNs and other machine-learning models have shown their efficiency in learning and identifying the admixtures’ IR signature spectra. Hence, the proposed advanced quality control models can be a very useful tool to determine the admixtures’ quality accurately and quickly and eventually to guarantee their intended performance in altering the concrete’s properties.
    publisherASCE
    titleAdvanced Quality Control Models for Concrete Admixtures
    typeJournal Paper
    journal volume32
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003024
    page04019349
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian