YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Direct Tensile Properties and Stress–Strain Model of UHP-ECC

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 001
    Author:
    Ke-Quan Yu
    ,
    Zhou-Dao Lu
    ,
    Jian-Guo Dai
    ,
    Surendra P. Shah
    DOI: 10.1061/(ASCE)MT.1943-5533.0002975
    Publisher: ASCE
    Abstract: This research developed an ultra-high-performance engineered cementitious composite (UHP-ECC), which combines the properties of strain-hardening, multiple cracking, and high mechanical strength. The compressive strength of the UHP-ECC reached 150 MPa at 28 days under standard curing conditions, whereas the tensile strength and strain capacity of the UHP-ECC were 18 MPa and 8%, respectively. Different fiber volumetric ratios and geometries (fiber length and diameter) were used to investigate the influences of fiber-reinforcement parameters on the mechanical and crack-pattern properties of UHP-ECC, including the tensile strength, strain capacity, strain energy, crack number, and crack spacing. It was found that the fiber reinforcement parameters significantly influence both the mechanical properties and crack-patterns of UHP-ECC. Based on the test results, a bilinear tensile stress–strain model was proposed for UHP-ECC and its accuracy was demonstrated through comparisons with the test results.
    • Download: (2.222Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Direct Tensile Properties and Stress–Strain Model of UHP-ECC

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266121
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorKe-Quan Yu
    contributor authorZhou-Dao Lu
    contributor authorJian-Guo Dai
    contributor authorSurendra P. Shah
    date accessioned2022-01-30T19:52:24Z
    date available2022-01-30T19:52:24Z
    date issued2020
    identifier other%28ASCE%29MT.1943-5533.0002975.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266121
    description abstractThis research developed an ultra-high-performance engineered cementitious composite (UHP-ECC), which combines the properties of strain-hardening, multiple cracking, and high mechanical strength. The compressive strength of the UHP-ECC reached 150 MPa at 28 days under standard curing conditions, whereas the tensile strength and strain capacity of the UHP-ECC were 18 MPa and 8%, respectively. Different fiber volumetric ratios and geometries (fiber length and diameter) were used to investigate the influences of fiber-reinforcement parameters on the mechanical and crack-pattern properties of UHP-ECC, including the tensile strength, strain capacity, strain energy, crack number, and crack spacing. It was found that the fiber reinforcement parameters significantly influence both the mechanical properties and crack-patterns of UHP-ECC. Based on the test results, a bilinear tensile stress–strain model was proposed for UHP-ECC and its accuracy was demonstrated through comparisons with the test results.
    publisherASCE
    titleDirect Tensile Properties and Stress–Strain Model of UHP-ECC
    typeJournal Paper
    journal volume32
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002975
    page04019334
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian