YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Investigation on the Anchorage Zone of Prestressed UHPC Box-Girder Bridge

    Source: Journal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 006
    Author:
    Chuanxi Li
    ,
    Zheng Feng
    ,
    Rensheng Pan
    ,
    Lu Ke
    ,
    Jun He
    ,
    Shuai Dong
    DOI: 10.1061/(ASCE)BE.1943-5592.0001556
    Publisher: ASCE
    Abstract: The structural behavior of the anchorage zone is a key issue in prestressed ultra-high performance concrete (UHPC) box-girder bridges. This study investigates the mechanical behavior of a diaphragm–blister integrated anchorage system (DBIAS) used in UHPC box-girder bridges through the full-scale model test. Parametric analyses were also conducted using test-validated finite-element models. Experimental results show that no visible cracks have emerged when the applied load reaches 4,700 kN, which is 1.36 times the design value. Although the strain in some local areas has entered into the tensile strain-hardening domain of UHPC under the prestressing force, the whole structure still works well. The contribution of strain-hardening behavior of UHPC to the loading capacity of anchorage blister is 8.7%, based on nonlinear finite-element analysis. Therefore, the tensile strain capacity of UHPC may be taken into consideration in the design so as to fully make use of the material strength. Compared with the conventional independent blister anchorage system, the local effects on the anchorage zone are significantly reduced by setting anchorage diaphragms and transverse ribs in a DBIAS. The increase in the width and longitudinal spacing of adjacent diaphragms shows effectiveness in relieving the stress concentration in the anchorage zone. However, local effects will not be continuously reduced when the width of the diaphragm is more than six times that of the anchorage blister or the spacing between the diaphragm and the transverse rib exceeds a certain distance (2 m in the present study case).
    • Download: (2.778Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Investigation on the Anchorage Zone of Prestressed UHPC Box-Girder Bridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266119
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorChuanxi Li
    contributor authorZheng Feng
    contributor authorRensheng Pan
    contributor authorLu Ke
    contributor authorJun He
    contributor authorShuai Dong
    date accessioned2022-01-30T19:52:22Z
    date available2022-01-30T19:52:22Z
    date issued2020
    identifier other%28ASCE%29BE.1943-5592.0001556.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266119
    description abstractThe structural behavior of the anchorage zone is a key issue in prestressed ultra-high performance concrete (UHPC) box-girder bridges. This study investigates the mechanical behavior of a diaphragm–blister integrated anchorage system (DBIAS) used in UHPC box-girder bridges through the full-scale model test. Parametric analyses were also conducted using test-validated finite-element models. Experimental results show that no visible cracks have emerged when the applied load reaches 4,700 kN, which is 1.36 times the design value. Although the strain in some local areas has entered into the tensile strain-hardening domain of UHPC under the prestressing force, the whole structure still works well. The contribution of strain-hardening behavior of UHPC to the loading capacity of anchorage blister is 8.7%, based on nonlinear finite-element analysis. Therefore, the tensile strain capacity of UHPC may be taken into consideration in the design so as to fully make use of the material strength. Compared with the conventional independent blister anchorage system, the local effects on the anchorage zone are significantly reduced by setting anchorage diaphragms and transverse ribs in a DBIAS. The increase in the width and longitudinal spacing of adjacent diaphragms shows effectiveness in relieving the stress concentration in the anchorage zone. However, local effects will not be continuously reduced when the width of the diaphragm is more than six times that of the anchorage blister or the spacing between the diaphragm and the transverse rib exceeds a certain distance (2 m in the present study case).
    publisherASCE
    titleExperimental and Numerical Investigation on the Anchorage Zone of Prestressed UHPC Box-Girder Bridge
    typeJournal Paper
    journal volume25
    journal issue6
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001556
    page04020028
    treeJournal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian