YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Participatory Sensing and Digital Twin City: Updating Virtual City Models for Enhanced Risk-Informed Decision-Making

    Source: Journal of Management in Engineering:;2020:;Volume ( 036 ):;issue: 003
    Author:
    Youngjib Ham
    ,
    Jaeyoon Kim
    DOI: 10.1061/(ASCE)ME.1943-5479.0000748
    Publisher: ASCE
    Abstract: The benefits of a digital twin city have been assessed based on real-time data collected from preinstalled Internet of Things (IoT) sensors (e.g., traffic, energy use, air pollution, water quality) for managing the complex systems of cities, but the sensor-based reality information is likely insufficient to provide dynamic spatiotemporal information about physical vulnerabilities. Understanding cities’ current states of physical vulnerability can support city decision makers in analyzing associated potential risk in urban areas for data-driven infrastructure management in extreme weather events. As a step toward creating a digital twin city for effective risk-informed decision-making, this paper proposes a new framework to bring crowdsourced visual data-based reality information into a three-dimensional (3D) virtual city for a model update with interactive and immersive visualization. Unstructured visual data are collected from participatory sensing and analyzed to estimate the geospatial information of vulnerable objects in the distance representing physical vulnerability in cities. The crowdsourced visual data–based reality information of physical vulnerability in a given region is then integrated with a 3D virtual city model, and the updated 3D city model is fed into a computer-aided virtual environment (CAVE) for immersive visualization to enable users to navigate the intersection of reality and virtuality. To test the proposed framework, case studies were conducted on Houston. The outcomes demonstrate that the proposed method has the potential to make the virtual city model live in terms of local vulnerability. The digital twin city building on crowdsourced visual data is expected to contribute to risk-informed decision-making for infrastructure management in cities and help analyze various what-if scenarios in disaster situations with increased visibility of hazard and city interactions.
    • Download: (2.782Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Participatory Sensing and Digital Twin City: Updating Virtual City Models for Enhanced Risk-Informed Decision-Making

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266065
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorYoungjib Ham
    contributor authorJaeyoon Kim
    date accessioned2022-01-30T19:50:18Z
    date available2022-01-30T19:50:18Z
    date issued2020
    identifier other%28ASCE%29ME.1943-5479.0000748.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266065
    description abstractThe benefits of a digital twin city have been assessed based on real-time data collected from preinstalled Internet of Things (IoT) sensors (e.g., traffic, energy use, air pollution, water quality) for managing the complex systems of cities, but the sensor-based reality information is likely insufficient to provide dynamic spatiotemporal information about physical vulnerabilities. Understanding cities’ current states of physical vulnerability can support city decision makers in analyzing associated potential risk in urban areas for data-driven infrastructure management in extreme weather events. As a step toward creating a digital twin city for effective risk-informed decision-making, this paper proposes a new framework to bring crowdsourced visual data-based reality information into a three-dimensional (3D) virtual city for a model update with interactive and immersive visualization. Unstructured visual data are collected from participatory sensing and analyzed to estimate the geospatial information of vulnerable objects in the distance representing physical vulnerability in cities. The crowdsourced visual data–based reality information of physical vulnerability in a given region is then integrated with a 3D virtual city model, and the updated 3D city model is fed into a computer-aided virtual environment (CAVE) for immersive visualization to enable users to navigate the intersection of reality and virtuality. To test the proposed framework, case studies were conducted on Houston. The outcomes demonstrate that the proposed method has the potential to make the virtual city model live in terms of local vulnerability. The digital twin city building on crowdsourced visual data is expected to contribute to risk-informed decision-making for infrastructure management in cities and help analyze various what-if scenarios in disaster situations with increased visibility of hazard and city interactions.
    publisherASCE
    titleParticipatory Sensing and Digital Twin City: Updating Virtual City Models for Enhanced Risk-Informed Decision-Making
    typeJournal Paper
    journal volume36
    journal issue3
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0000748
    page04020005
    treeJournal of Management in Engineering:;2020:;Volume ( 036 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian