YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pavement Maintenance Threshold Detection and Network-Level Rutting Prediction Model Based on Finnish Road Data

    Source: Journal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 002
    Author:
    Taavi Dettenborn
    ,
    Ari Hartikainen
    ,
    Leena Korkiala-Tanttu
    DOI: 10.1061/(ASCE)IS.1943-555X.0000539
    Publisher: ASCE
    Abstract: Accurate prediction models for road structure deterioration increase the cost-effectiveness of road construction and the scheduling rehabilitation and maintenance of road structures. In this paper, a method to detect the minimum maintenance operation detection (MMOD) threshold and network-level pavement rutting prediction model are described. The MMOD threshold has the potential to filter network-level pavement rutting measurement data and improve prediction models. The model is a multilevel statistical time series model for rutting prediction without the need for measurement history. The model parameters used are pavement type and average daily traffic. The road maintenance planner estimates the need for a minimum sampling rate for future pavement performance measurements and predicts the pavement rut behavior. For asphalt concrete and soft asphalt concrete, the model gives realistic predictions for the first 10 years. For stone mastic asphalt, the realistic prediction window is the first six years.
    • Download: (1.893Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pavement Maintenance Threshold Detection and Network-Level Rutting Prediction Model Based on Finnish Road Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265968
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorTaavi Dettenborn
    contributor authorAri Hartikainen
    contributor authorLeena Korkiala-Tanttu
    date accessioned2022-01-30T19:46:51Z
    date available2022-01-30T19:46:51Z
    date issued2020
    identifier other%28ASCE%29IS.1943-555X.0000539.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265968
    description abstractAccurate prediction models for road structure deterioration increase the cost-effectiveness of road construction and the scheduling rehabilitation and maintenance of road structures. In this paper, a method to detect the minimum maintenance operation detection (MMOD) threshold and network-level pavement rutting prediction model are described. The MMOD threshold has the potential to filter network-level pavement rutting measurement data and improve prediction models. The model is a multilevel statistical time series model for rutting prediction without the need for measurement history. The model parameters used are pavement type and average daily traffic. The road maintenance planner estimates the need for a minimum sampling rate for future pavement performance measurements and predicts the pavement rut behavior. For asphalt concrete and soft asphalt concrete, the model gives realistic predictions for the first 10 years. For stone mastic asphalt, the realistic prediction window is the first six years.
    publisherASCE
    titlePavement Maintenance Threshold Detection and Network-Level Rutting Prediction Model Based on Finnish Road Data
    typeJournal Paper
    journal volume26
    journal issue2
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000539
    page04020016
    treeJournal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian