YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Preliminary Attempt toward Better Understanding the Impact of Distributed Energy Generation: An Agent-Based Computational Economics Approach

    Source: Journal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 001
    Author:
    Islam H. El-adaway
    ,
    Charles Sims
    ,
    Mohamed S. Eid
    ,
    Yinan Liu
    ,
    Gasser G. Ali
    DOI: 10.1061/(ASCE)IS.1943-555X.0000527
    Publisher: ASCE
    Abstract: The increasing adoption of small-scale electricity generation technologies represents a transition from a hub-and-spoke system of centralized electricity generation to distributed energy resources (DER). Many utilities understand the benefits of DER but are unsure of how to mitigate the associated challenges, including intermittent generation, stranded assets, inability to dispatch, and an inability to control when generation is produced (“must take” energy). Using a bottom-up agent-based computational economics approach, this paper studies the evolving dynamic behaviors that influence the DER investment decisions facing the associated stakeholders. Building off the existing agent-based modeling of electricity systems (AMES) model and using a hypothetical case study in evolving actual data from Tennessee, the New England region, and some other reasonably assumed and verified parameters from the literature; the authors developed a proof-of-concept framework to account for the different system components associated with adoption of distributed solar generation (DSG). The interdependent steps included (1) incorporating different transmission and generation features from that of AMES, (2) allowing for customer electricity demand sensitivity to electricity rates, and (3) creating a new end-use customer agent type that allows for investigation of DSG investment behavior. Pursuant to a successful model testing processes including local sensitivity analysis, the model’s architectural design was able to represent the generic characteristics of the DSG domain problem and its potential future application to actual utility data. To this end, the authors present a benchmark simulation that was compared with two counterfactual scenario simulations. Although the results presented in this paper are illustrative and not prescriptive (i.e., the observations and discussions from the hypothetical case study are expected to—and should—change when applied to specific utility companies), they do still highlight a number of interesting trends. First, the declining cost of solar has not yet had a statistically significant impact on customer demand in six of the model’s largest utilities. Second, decreased load demand due to adoption of DSG technologies will have a large impact on high-cost generating units in the model but may have little impact on the lowest-cost generating units. Third, transmission line constraints matter. Despite the promising results, the model still needs more refinements to completely capture the feedback between customer adoption of DSG and utility investments in new generation resources and transmission assets. When complete, this research will result in a decision-support tool that will identify least-cost strategies that utility companies can use to respond to increasing penetration of DER.
    • Download: (1.594Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Preliminary Attempt toward Better Understanding the Impact of Distributed Energy Generation: An Agent-Based Computational Economics Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265957
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorIslam H. El-adaway
    contributor authorCharles Sims
    contributor authorMohamed S. Eid
    contributor authorYinan Liu
    contributor authorGasser G. Ali
    date accessioned2022-01-30T19:46:31Z
    date available2022-01-30T19:46:31Z
    date issued2020
    identifier other%28ASCE%29IS.1943-555X.0000527.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265957
    description abstractThe increasing adoption of small-scale electricity generation technologies represents a transition from a hub-and-spoke system of centralized electricity generation to distributed energy resources (DER). Many utilities understand the benefits of DER but are unsure of how to mitigate the associated challenges, including intermittent generation, stranded assets, inability to dispatch, and an inability to control when generation is produced (“must take” energy). Using a bottom-up agent-based computational economics approach, this paper studies the evolving dynamic behaviors that influence the DER investment decisions facing the associated stakeholders. Building off the existing agent-based modeling of electricity systems (AMES) model and using a hypothetical case study in evolving actual data from Tennessee, the New England region, and some other reasonably assumed and verified parameters from the literature; the authors developed a proof-of-concept framework to account for the different system components associated with adoption of distributed solar generation (DSG). The interdependent steps included (1) incorporating different transmission and generation features from that of AMES, (2) allowing for customer electricity demand sensitivity to electricity rates, and (3) creating a new end-use customer agent type that allows for investigation of DSG investment behavior. Pursuant to a successful model testing processes including local sensitivity analysis, the model’s architectural design was able to represent the generic characteristics of the DSG domain problem and its potential future application to actual utility data. To this end, the authors present a benchmark simulation that was compared with two counterfactual scenario simulations. Although the results presented in this paper are illustrative and not prescriptive (i.e., the observations and discussions from the hypothetical case study are expected to—and should—change when applied to specific utility companies), they do still highlight a number of interesting trends. First, the declining cost of solar has not yet had a statistically significant impact on customer demand in six of the model’s largest utilities. Second, decreased load demand due to adoption of DSG technologies will have a large impact on high-cost generating units in the model but may have little impact on the lowest-cost generating units. Third, transmission line constraints matter. Despite the promising results, the model still needs more refinements to completely capture the feedback between customer adoption of DSG and utility investments in new generation resources and transmission assets. When complete, this research will result in a decision-support tool that will identify least-cost strategies that utility companies can use to respond to increasing penetration of DER.
    publisherASCE
    titlePreliminary Attempt toward Better Understanding the Impact of Distributed Energy Generation: An Agent-Based Computational Economics Approach
    typeJournal Paper
    journal volume26
    journal issue1
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000527
    page04020002
    treeJournal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian