YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical and Experimental Study on Mitigation of Storm Geysers in Edmonton, Alberta, Canada

    Source: Journal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 003
    Author:
    Yu Qian
    ,
    David Z. Zhu
    ,
    Lujia Liu
    ,
    Weiyun Shao
    ,
    Stephen Edwini-Bonsu
    ,
    Fayi Zhou
    DOI: 10.1061/(ASCE)HY.1943-7900.0001684
    Publisher: ASCE
    Abstract: Geysers can occur in storm sewer systems during heavy storm events, leading to public safety concerns. In this study, a physical model as well as a transient three-dimensional computational fluid dynamic model were used to investigate potential mitigation methods. Two types of geysers, caused by the rapid filling and release of air pockets, were simulated numerically and validated with physical measurements. For geyser mitigation, benching, water recirculation chambers, and orifice plates were proposed and assessed numerically, and the effect of an inflow control method was also studied. The numerically tested geyser mitigation methods showed positive effects on reducing the amount of water erupting out of the manhole, but they also increased the amount of air transported downstream, which could cause issues further downstream. Water recirculation chambers mitigated the water erupting out of manholes without increasing the pressure in the pipes significantly. The strategy of sealing the riser was able to completely mitigate geyser events, but it also generated higher pressure in the upstream pipe and transported a higher amount of air downstream. It was found that using orifice plates to mitigate the second type geyser can generate a water hammer–like pressure pattern in the riser, with a peak pressure reaching about seven times the driving pressure when the orifice diameter is 0.2 times the riser diameter. With the inflow control method, the physically measured pressure variation was reduced, and the onset of geysers was visually reduced.
    • Download: (2.805Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical and Experimental Study on Mitigation of Storm Geysers in Edmonton, Alberta, Canada

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265883
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorYu Qian
    contributor authorDavid Z. Zhu
    contributor authorLujia Liu
    contributor authorWeiyun Shao
    contributor authorStephen Edwini-Bonsu
    contributor authorFayi Zhou
    date accessioned2022-01-30T19:44:11Z
    date available2022-01-30T19:44:11Z
    date issued2020
    identifier other%28ASCE%29HY.1943-7900.0001684.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265883
    description abstractGeysers can occur in storm sewer systems during heavy storm events, leading to public safety concerns. In this study, a physical model as well as a transient three-dimensional computational fluid dynamic model were used to investigate potential mitigation methods. Two types of geysers, caused by the rapid filling and release of air pockets, were simulated numerically and validated with physical measurements. For geyser mitigation, benching, water recirculation chambers, and orifice plates were proposed and assessed numerically, and the effect of an inflow control method was also studied. The numerically tested geyser mitigation methods showed positive effects on reducing the amount of water erupting out of the manhole, but they also increased the amount of air transported downstream, which could cause issues further downstream. Water recirculation chambers mitigated the water erupting out of manholes without increasing the pressure in the pipes significantly. The strategy of sealing the riser was able to completely mitigate geyser events, but it also generated higher pressure in the upstream pipe and transported a higher amount of air downstream. It was found that using orifice plates to mitigate the second type geyser can generate a water hammer–like pressure pattern in the riser, with a peak pressure reaching about seven times the driving pressure when the orifice diameter is 0.2 times the riser diameter. With the inflow control method, the physically measured pressure variation was reduced, and the onset of geysers was visually reduced.
    publisherASCE
    titleNumerical and Experimental Study on Mitigation of Storm Geysers in Edmonton, Alberta, Canada
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001684
    page04019069
    treeJournal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian