YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization and Variants of Quantile-Based Methods for Bias Corrections of Statistically Downscaled Precipitation Data

    Source: Journal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 007
    Author:
    Aneesh Goly
    ,
    Ramesh S. V. Teegavarapu
    DOI: 10.1061/(ASCE)HE.1943-5584.0001926
    Publisher: ASCE
    Abstract: New optimization and variants of quantile-based methods are developed for bias corrections of monthly and daily general circulation model (GCM)-based statistically downscaled precipitation data. These methods use optimization formulations involving several linear and nonlinear corrections with single and multiple objectives and integrate artificial neural networks (ANNs) with quantile matching (QM) methods. The proposed methods were evaluated at 18 rain gauge sites in Florida using several error and performance measures. Downscaled monthly precipitation data are derived from two statistical downscaling models, including a support vector machine (SVM)-based method developed in this study. Downscaled daily precipitation data from two different climatic zones are also used for the evaluation of bias-correction methods. The methods are assessed based on several performance and error measures, along with their ability to replicate all the moments of the distribution. The selection of the best method among several others for a specific site was found to be dependent on specific performance and error measures adopted for evaluation. The proposed methods not only replicated the observed precipitation data distributions but also minimized the quantitative errors between observed and downscaled precipitation data sets, which could not be accomplished using existing methods. ANN-based methods performed better than QM-based ones in replicating extreme precipitation indices at a daily temporal scale. The multiobjective optimization methods require careful selection of objectives and assignment of weights, with the latter heavily influencing the performance of methods. Variation in performances of methods is observed when methods are calibrated with varying baseline periods with a constant length of test data.
    • Download: (3.059Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization and Variants of Quantile-Based Methods for Bias Corrections of Statistically Downscaled Precipitation Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265858
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorAneesh Goly
    contributor authorRamesh S. V. Teegavarapu
    date accessioned2022-01-30T19:43:18Z
    date available2022-01-30T19:43:18Z
    date issued2020
    identifier other%28ASCE%29HE.1943-5584.0001926.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265858
    description abstractNew optimization and variants of quantile-based methods are developed for bias corrections of monthly and daily general circulation model (GCM)-based statistically downscaled precipitation data. These methods use optimization formulations involving several linear and nonlinear corrections with single and multiple objectives and integrate artificial neural networks (ANNs) with quantile matching (QM) methods. The proposed methods were evaluated at 18 rain gauge sites in Florida using several error and performance measures. Downscaled monthly precipitation data are derived from two statistical downscaling models, including a support vector machine (SVM)-based method developed in this study. Downscaled daily precipitation data from two different climatic zones are also used for the evaluation of bias-correction methods. The methods are assessed based on several performance and error measures, along with their ability to replicate all the moments of the distribution. The selection of the best method among several others for a specific site was found to be dependent on specific performance and error measures adopted for evaluation. The proposed methods not only replicated the observed precipitation data distributions but also minimized the quantitative errors between observed and downscaled precipitation data sets, which could not be accomplished using existing methods. ANN-based methods performed better than QM-based ones in replicating extreme precipitation indices at a daily temporal scale. The multiobjective optimization methods require careful selection of objectives and assignment of weights, with the latter heavily influencing the performance of methods. Variation in performances of methods is observed when methods are calibrated with varying baseline periods with a constant length of test data.
    publisherASCE
    titleOptimization and Variants of Quantile-Based Methods for Bias Corrections of Statistically Downscaled Precipitation Data
    typeJournal Paper
    journal volume25
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001926
    page04020027
    treeJournal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian