YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluating the Effect of Transpiration in Hydrologic Model Simulation through Parameter Calibration

    Source: Journal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 005
    Author:
    Zejun Li
    ,
    Pan Liu
    ,
    Maoyuan Feng
    ,
    Xueqing Cui
    ,
    Ping He
    ,
    Caijun Wang
    ,
    Jingwen Zhang
    DOI: 10.1061/(ASCE)HE.1943-5584.0001895
    Publisher: ASCE
    Abstract: The effect of evapotranspiration (ET) on water redistribution in hydrological models has already been explored in many studies, but whether correcting plant transpiration (EP) in a hydrologic model can play a comparable role remains unclear. This study aims to evaluate the effect of EP from the perspective of model calibration. Reference EP data were derived from the Biome Biogeochemical Cycles (Biome-BGC) model, with parameters based on long-term field investigation of the Qinghai-Tibetan Plateau. Soil and Water Assessment Tool (SWAT) model calibration and EP-sensitive parameter analysis were conducted in the plateau’s Huangshui basin. Four modeling experiments were explored: (1) SWAT base model; (2) calibration against EP for each subbasin; (3) calibration against runoff at the gauge station; and (4) calibration against both EP and runoff. The effects of EP and runoff were analyzed. The results indicate that calibration against either EP or the runoff process alone is not adequate to produce spatially and temporally accurate water partitioning. Specifically, calibration against EP improves the runoff simulation during wet and warm seasons and the EP spatial pattern across the basin. Parameters involved in vertical water redistribution are sufficient but not necessary conditions to affect the EP process in the SWAT model. Calibration against runoff gives priority to regulating the EP in the watershed as a whole, retaining a negative spatial correlation with the reference EP. To produce a better simulation of EP and runoff, both factors are recommended in the calibration based on the SWAT model parameterization.
    • Download: (5.348Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluating the Effect of Transpiration in Hydrologic Model Simulation through Parameter Calibration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265837
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorZejun Li
    contributor authorPan Liu
    contributor authorMaoyuan Feng
    contributor authorXueqing Cui
    contributor authorPing He
    contributor authorCaijun Wang
    contributor authorJingwen Zhang
    date accessioned2022-01-30T19:42:44Z
    date available2022-01-30T19:42:44Z
    date issued2020
    identifier other%28ASCE%29HE.1943-5584.0001895.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265837
    description abstractThe effect of evapotranspiration (ET) on water redistribution in hydrological models has already been explored in many studies, but whether correcting plant transpiration (EP) in a hydrologic model can play a comparable role remains unclear. This study aims to evaluate the effect of EP from the perspective of model calibration. Reference EP data were derived from the Biome Biogeochemical Cycles (Biome-BGC) model, with parameters based on long-term field investigation of the Qinghai-Tibetan Plateau. Soil and Water Assessment Tool (SWAT) model calibration and EP-sensitive parameter analysis were conducted in the plateau’s Huangshui basin. Four modeling experiments were explored: (1) SWAT base model; (2) calibration against EP for each subbasin; (3) calibration against runoff at the gauge station; and (4) calibration against both EP and runoff. The effects of EP and runoff were analyzed. The results indicate that calibration against either EP or the runoff process alone is not adequate to produce spatially and temporally accurate water partitioning. Specifically, calibration against EP improves the runoff simulation during wet and warm seasons and the EP spatial pattern across the basin. Parameters involved in vertical water redistribution are sufficient but not necessary conditions to affect the EP process in the SWAT model. Calibration against runoff gives priority to regulating the EP in the watershed as a whole, retaining a negative spatial correlation with the reference EP. To produce a better simulation of EP and runoff, both factors are recommended in the calibration based on the SWAT model parameterization.
    publisherASCE
    titleEvaluating the Effect of Transpiration in Hydrologic Model Simulation through Parameter Calibration
    typeJournal Paper
    journal volume25
    journal issue5
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001895
    page04020007
    treeJournal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian