YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Active Earth Pressure of Narrow Cohesionless Backfill on Inclined Rigid Retaining Walls Rotating about the Bottom

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 007
    Author:
    Yu-jian Lin
    ,
    Fu-quan Chen
    ,
    Jun-tao Yang
    ,
    Dayong Li
    DOI: 10.1061/(ASCE)GM.1943-5622.0001727
    Publisher: ASCE
    Abstract: In engineering constructions, the backfill behind retaining walls is usually narrow, and its boundary conditions are asymmetric due to the space limitation. When the retaining wall rotates about the bottom, the direction of the principal stress also rotates due to the granular properties of soil and the multiple interfaces friction. Such phenomenon is more significant in narrow backfill, however, there are few studies about this. The finite element method analysis is able to demonstrate how the failure mode of narrow backfill and the rotation of principal stress are affected by the backfill geometry and interfaces friction. Theoretical analysis is employed here to calculate the principal stress rotation angle and lateral pressure coefficient of the interface element. Similarly, active earth pressure of narrow cohesionless backfill against inclined rigid walls rotating about the bottom, considering principal stress rotation and uniform load on the ground, is derived by differential element limit equilibrium, which, upon comparison with methods used in previous studies, is suitable for the asymmetric inclined boundaries and improves the scope and accuracy of calculation. Parametric studies herein show that increasing the new structure inclination and decreasing its friction will reduce the interference in the existing structure.
    • Download: (1.770Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Active Earth Pressure of Narrow Cohesionless Backfill on Inclined Rigid Retaining Walls Rotating about the Bottom

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265743
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYu-jian Lin
    contributor authorFu-quan Chen
    contributor authorJun-tao Yang
    contributor authorDayong Li
    date accessioned2022-01-30T19:39:36Z
    date available2022-01-30T19:39:36Z
    date issued2020
    identifier other%28ASCE%29GM.1943-5622.0001727.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265743
    description abstractIn engineering constructions, the backfill behind retaining walls is usually narrow, and its boundary conditions are asymmetric due to the space limitation. When the retaining wall rotates about the bottom, the direction of the principal stress also rotates due to the granular properties of soil and the multiple interfaces friction. Such phenomenon is more significant in narrow backfill, however, there are few studies about this. The finite element method analysis is able to demonstrate how the failure mode of narrow backfill and the rotation of principal stress are affected by the backfill geometry and interfaces friction. Theoretical analysis is employed here to calculate the principal stress rotation angle and lateral pressure coefficient of the interface element. Similarly, active earth pressure of narrow cohesionless backfill against inclined rigid walls rotating about the bottom, considering principal stress rotation and uniform load on the ground, is derived by differential element limit equilibrium, which, upon comparison with methods used in previous studies, is suitable for the asymmetric inclined boundaries and improves the scope and accuracy of calculation. Parametric studies herein show that increasing the new structure inclination and decreasing its friction will reduce the interference in the existing structure.
    publisherASCE
    titleActive Earth Pressure of Narrow Cohesionless Backfill on Inclined Rigid Retaining Walls Rotating about the Bottom
    typeJournal Paper
    journal volume20
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001727
    page04020102
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian