YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strength, Permeability, and Micromechanisms of Industrial Residue Magnesium Oxychloride Cement Solidified Slurry

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 007
    Author:
    Dongxing Wang
    ,
    Mahfoud Benzerzour
    ,
    Xu Hu
    ,
    Bin Huang
    ,
    Zhengguang Chen
    ,
    Xueyong Xu
    DOI: 10.1061/(ASCE)GM.1943-5622.0001690
    Publisher: ASCE
    Abstract: The solidification of construction waste slurry draws much attention today due to the increasing awareness of environmental protection. Magnesium oxychloride cement (MOC) was first incorporated to solidify slurry in combination with industrial residue, which has the potential to be used as roadbed material. Three types of binding materials including MOC, industrial residue, and industrial residue modified MOC were proposed to evaluate their performance in the solidification of construction slurry with high water content. The unconfined compressive strength (UCS) and coefficient of permeability were investigated, taking into account factors including MOC content, molar ratio of MgO/MgCl2, mass ratio of MOC to industrial residue, industrial residue content, and curing time. The microstructure was identified to reveal the intrinsic mechanisms by scanning electron microscopy (SEM). The results showed that the mechanical behavior of solidified slurry was largely influenced by these factors, and the industrial residue proved effective in improving the strength and permeability of MOC solidified slurry by impeding the decomposition of phase 5 and phase 3 and absorbing a certain amount of water. The industrial residue modified MOC solidified slurry showed higher water resistance and a lower coefficient of permeability due to the generation of amorphous calcium silicate hydrate (C-S-H) gels, phase 5 and phase 3 that could form a much stronger interlocking network.
    • Download: (1.739Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strength, Permeability, and Micromechanisms of Industrial Residue Magnesium Oxychloride Cement Solidified Slurry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265716
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorDongxing Wang
    contributor authorMahfoud Benzerzour
    contributor authorXu Hu
    contributor authorBin Huang
    contributor authorZhengguang Chen
    contributor authorXueyong Xu
    date accessioned2022-01-30T19:38:49Z
    date available2022-01-30T19:38:49Z
    date issued2020
    identifier other%28ASCE%29GM.1943-5622.0001690.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265716
    description abstractThe solidification of construction waste slurry draws much attention today due to the increasing awareness of environmental protection. Magnesium oxychloride cement (MOC) was first incorporated to solidify slurry in combination with industrial residue, which has the potential to be used as roadbed material. Three types of binding materials including MOC, industrial residue, and industrial residue modified MOC were proposed to evaluate their performance in the solidification of construction slurry with high water content. The unconfined compressive strength (UCS) and coefficient of permeability were investigated, taking into account factors including MOC content, molar ratio of MgO/MgCl2, mass ratio of MOC to industrial residue, industrial residue content, and curing time. The microstructure was identified to reveal the intrinsic mechanisms by scanning electron microscopy (SEM). The results showed that the mechanical behavior of solidified slurry was largely influenced by these factors, and the industrial residue proved effective in improving the strength and permeability of MOC solidified slurry by impeding the decomposition of phase 5 and phase 3 and absorbing a certain amount of water. The industrial residue modified MOC solidified slurry showed higher water resistance and a lower coefficient of permeability due to the generation of amorphous calcium silicate hydrate (C-S-H) gels, phase 5 and phase 3 that could form a much stronger interlocking network.
    publisherASCE
    titleStrength, Permeability, and Micromechanisms of Industrial Residue Magnesium Oxychloride Cement Solidified Slurry
    typeJournal Paper
    journal volume20
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001690
    page04020088
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian