YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Salt Solution Attack–Induced Freeze–Thaw Mechanical Degradation and Its Correlation with Strength Characteristic of Mode-I Fracture Sandstone

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 005
    Author:
    T. L. Han
    ,
    J. P. Shi
    ,
    Y. S. Chen
    ,
    X. S. Cao
    DOI: 10.1061/(ASCE)GM.1943-5622.0001642
    Publisher: ASCE
    Abstract: The safety and durability of rock mass engineering face rigorous testing in cold regions, prompting experimental study of the effect of chemical corrosion and freeze–thaw (F–T) cycles. By taking the actual environment of the joint rock in the hydro-fluctuation belt of a typical bank slope in the Three Gorges Reservoir region of China as an example, the interactive relationship between chemical corrosion and F–T cycles is studied. An F–T cycle test scheme is adopted to explore the F–T degradation of mechanical properties and the damage degradation mechanism of mode-I fracture sandstone immersed in different chemical solutions. Experimental results show that there is significant F–T damage that deteriorates mechanical properties under different chemical corrosion attacks but that peak strain and yield properties of the specimen increase. In the first 0–20 F–T cycles, the deterioration of the mechanical properties of sandstone immersed in the alkaline Na2SO4 (pH = 12.0) solutions is the smallest; that in the acid Na2SO4 (pH = 3.0) solutions is the greatest. With the increasing number of F–T cycles, the F–T degradation degree of the mechanical properties in Na2SO4 (pH = 12.0) solutions gradually increase, but that is still smaller than that in the acid Na2SO4 (pH = 3.0) solutions, and is relatively great compared with that in neutral solutions. The damage to the microstructure inside sandstone gradually increases with repeated F–T cycles; the edges and corners of the mineral grains gradually disappear or become smoother. In addition, the roughness of the mineral grains gradually decreases, eliciting a looser structure. Statistical analysis reveals an obvious relationship between the damage degree of mechanical parameters and ion concentration in chemical solutions, with higher ion concentrations leading to greater deterioration degrees of physical and mechanical parameters. Correlations among physical and mechanical properties of specimens, F–T damage variable degree, and ion concentration are obtained.
    • Download: (5.390Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Salt Solution Attack–Induced Freeze–Thaw Mechanical Degradation and Its Correlation with Strength Characteristic of Mode-I Fracture Sandstone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265673
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorT. L. Han
    contributor authorJ. P. Shi
    contributor authorY. S. Chen
    contributor authorX. S. Cao
    date accessioned2022-01-30T19:37:40Z
    date available2022-01-30T19:37:40Z
    date issued2020
    identifier other%28ASCE%29GM.1943-5622.0001642.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265673
    description abstractThe safety and durability of rock mass engineering face rigorous testing in cold regions, prompting experimental study of the effect of chemical corrosion and freeze–thaw (F–T) cycles. By taking the actual environment of the joint rock in the hydro-fluctuation belt of a typical bank slope in the Three Gorges Reservoir region of China as an example, the interactive relationship between chemical corrosion and F–T cycles is studied. An F–T cycle test scheme is adopted to explore the F–T degradation of mechanical properties and the damage degradation mechanism of mode-I fracture sandstone immersed in different chemical solutions. Experimental results show that there is significant F–T damage that deteriorates mechanical properties under different chemical corrosion attacks but that peak strain and yield properties of the specimen increase. In the first 0–20 F–T cycles, the deterioration of the mechanical properties of sandstone immersed in the alkaline Na2SO4 (pH = 12.0) solutions is the smallest; that in the acid Na2SO4 (pH = 3.0) solutions is the greatest. With the increasing number of F–T cycles, the F–T degradation degree of the mechanical properties in Na2SO4 (pH = 12.0) solutions gradually increase, but that is still smaller than that in the acid Na2SO4 (pH = 3.0) solutions, and is relatively great compared with that in neutral solutions. The damage to the microstructure inside sandstone gradually increases with repeated F–T cycles; the edges and corners of the mineral grains gradually disappear or become smoother. In addition, the roughness of the mineral grains gradually decreases, eliciting a looser structure. Statistical analysis reveals an obvious relationship between the damage degree of mechanical parameters and ion concentration in chemical solutions, with higher ion concentrations leading to greater deterioration degrees of physical and mechanical parameters. Correlations among physical and mechanical properties of specimens, F–T damage variable degree, and ion concentration are obtained.
    publisherASCE
    titleSalt Solution Attack–Induced Freeze–Thaw Mechanical Degradation and Its Correlation with Strength Characteristic of Mode-I Fracture Sandstone
    typeJournal Paper
    journal volume20
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001642
    page04020039
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian