YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spatial Fractal Structure of Microseismic Events for Different Types of Rockburst in Deeply Buried Tunnels

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 004
    Author:
    Yang Yu
    ,
    Xia-Ting Feng
    ,
    Chang-jie Xu
    ,
    Bing-rui Chen
    ,
    Ya-Xun Xiao
    ,
    Guang-Liang Feng
    DOI: 10.1061/(ASCE)GM.1943-5622.0001631
    Publisher: ASCE
    Abstract: Based on a large amount of real-time microseismic monitoring data and hundreds of rockburst cases of different types stemming from the construction of deep tunnels at Jinping Mountain Hydropower Station, Sichuan Province, China, a fractal calculation method, which is suitable for the study of linear tunnels, was proposed to investigate the self-similarity of the spatial distribution of the microseismic events occurring during the development of strain-structure slip rockbursts and strain rockbursts. The range and distribution characteristics of spatial fractal dimensions in the development process of different types of rockbursts were also compared and analyzed. The overburden above the tunnels, which are largely excavated in marble, is between 800 and 2,525 m. The results indicate that the spatial distribution of microseismic events during the evolution of rockbursts displays fractal properties. The daily spatial fractal dimensions of microseismic events decrease during the development of a rockburst, and are reduced to the minimum value as a rockburst occurs. There is an inversely proportional relationship between the daily spatial fractal dimension and microseismic energy release. The spatial fractal dimensions of microseismic events associated with a whole rockburst can be used as a basis for estimating the type of rockburst: spatial fractal dimensions greater than and less than 1.3 correspond to strain rockbursts and strain-structure slip rockbursts, respectively. For different types of rockbursts, if the intensity is higher, the spatial fractal dimension is smaller. The conclusion provides a basis for the development of a warning system for the prediction and prevention of different types of rockbursts in deep tunnels.
    • Download: (1.340Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spatial Fractal Structure of Microseismic Events for Different Types of Rockburst in Deeply Buried Tunnels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265665
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYang Yu
    contributor authorXia-Ting Feng
    contributor authorChang-jie Xu
    contributor authorBing-rui Chen
    contributor authorYa-Xun Xiao
    contributor authorGuang-Liang Feng
    date accessioned2022-01-30T19:37:24Z
    date available2022-01-30T19:37:24Z
    date issued2020
    identifier other%28ASCE%29GM.1943-5622.0001631.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265665
    description abstractBased on a large amount of real-time microseismic monitoring data and hundreds of rockburst cases of different types stemming from the construction of deep tunnels at Jinping Mountain Hydropower Station, Sichuan Province, China, a fractal calculation method, which is suitable for the study of linear tunnels, was proposed to investigate the self-similarity of the spatial distribution of the microseismic events occurring during the development of strain-structure slip rockbursts and strain rockbursts. The range and distribution characteristics of spatial fractal dimensions in the development process of different types of rockbursts were also compared and analyzed. The overburden above the tunnels, which are largely excavated in marble, is between 800 and 2,525 m. The results indicate that the spatial distribution of microseismic events during the evolution of rockbursts displays fractal properties. The daily spatial fractal dimensions of microseismic events decrease during the development of a rockburst, and are reduced to the minimum value as a rockburst occurs. There is an inversely proportional relationship between the daily spatial fractal dimension and microseismic energy release. The spatial fractal dimensions of microseismic events associated with a whole rockburst can be used as a basis for estimating the type of rockburst: spatial fractal dimensions greater than and less than 1.3 correspond to strain rockbursts and strain-structure slip rockbursts, respectively. For different types of rockbursts, if the intensity is higher, the spatial fractal dimension is smaller. The conclusion provides a basis for the development of a warning system for the prediction and prevention of different types of rockbursts in deep tunnels.
    publisherASCE
    titleSpatial Fractal Structure of Microseismic Events for Different Types of Rockburst in Deeply Buried Tunnels
    typeJournal Paper
    journal volume20
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001631
    page04020025
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian