YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Complete Nonlinear Methods for Soil–Building Interaction Based on an Input Wavefield

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 003
    Author:
    Masahiro Iida
    DOI: 10.1061/(ASCE)GM.1943-5622.0001597
    Publisher: ASCE
    Abstract: Three-dimensional (3D) complete nonlinear methods for examining soil–building interaction based on an input seismic wavefield were developed. A seismic wavefield means seismic waves propagating in a 3D medium. Vertical ground motions and the material nonlinearity of the superstructure and the piles were incorporated into earlier methods. Consequently, employing a three-component input wavefield including surface waves, the methods are able to treat nonlinear behavior of the superstructure and the piles in the cases of soils with nonlinear and liquefaction behavior. The feasibility of the methods was demonstrated using a midrise RC building in the lakebed zone of Mexico City and a midrise RC building and a wood building in the reclaimed zone of Tokyo Bay. The response of a midrise RC building of Tokyo was displayed. The methods provide reasonable nonlinear building performance. Building responses became excessively large following extremely large increases in the amplitudes of surface waves in liquefied soils, thereby successfully indicating that Japanese RC building damage concentrates in the first story.
    • Download: (940.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Complete Nonlinear Methods for Soil–Building Interaction Based on an Input Wavefield

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265635
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMasahiro Iida
    date accessioned2022-01-30T19:36:37Z
    date available2022-01-30T19:36:37Z
    date issued2020
    identifier other%28ASCE%29GM.1943-5622.0001597.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265635
    description abstractThree-dimensional (3D) complete nonlinear methods for examining soil–building interaction based on an input seismic wavefield were developed. A seismic wavefield means seismic waves propagating in a 3D medium. Vertical ground motions and the material nonlinearity of the superstructure and the piles were incorporated into earlier methods. Consequently, employing a three-component input wavefield including surface waves, the methods are able to treat nonlinear behavior of the superstructure and the piles in the cases of soils with nonlinear and liquefaction behavior. The feasibility of the methods was demonstrated using a midrise RC building in the lakebed zone of Mexico City and a midrise RC building and a wood building in the reclaimed zone of Tokyo Bay. The response of a midrise RC building of Tokyo was displayed. The methods provide reasonable nonlinear building performance. Building responses became excessively large following extremely large increases in the amplitudes of surface waves in liquefied soils, thereby successfully indicating that Japanese RC building damage concentrates in the first story.
    publisherASCE
    title3D Complete Nonlinear Methods for Soil–Building Interaction Based on an Input Wavefield
    typeJournal Paper
    journal volume20
    journal issue3
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001597
    page04020005
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian