YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Earth Pressure Buildup in Impacting Earth Flow behind a Barrier

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 002
    Author:
    Hongyu Luo
    ,
    Limin Zhang
    DOI: 10.1061/(ASCE)GM.1943-5622.0001567
    Publisher: ASCE
    Abstract: Barriers are commonly used to intercept landslide flows or debris flows. The presence of a barrier changes the flow condition and leads to a buildup of earth pressure in a zone behind the barrier. Investigating this buildup process is essential to understand the landslide–barrier interaction and the stress evolution inside the earth flow. This study used an explicit integration program to simulate earth pressure buildup in the impacting earth flow in a series of two-dimensional (2D) and three-dimensional (3D) impact cases. In the idealized 2D flow cases, the stress state of earth flow reached the active limit state after the flow started and maintained the stress state until impact. During impact, horizontal earth pressure buildup occurred and propagated backward to the continuing flow; a dead zone thus formed. When the material ceased flow, a static earth pressure distribution was achieved. Starting from the distance at which the static lateral earth pressure coefficient was close to that in the greenfield case, the coefficient increased toward the barrier due to the earth pressure buildup, approaching the passive mode in the dead zone immediately behind the barrier. The static earth pressure on the back of the barrier was not uniform, with a passive mode in the dead zone and an active mode in the run-up zone in which the earth pressure was more easily released after impact. In the 3D flow cases, the opening spaces at both sides of the barrier affected flow conditions and weakened the buildup process.
    • Download: (1.439Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Earth Pressure Buildup in Impacting Earth Flow behind a Barrier

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265607
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHongyu Luo
    contributor authorLimin Zhang
    date accessioned2022-01-30T19:35:38Z
    date available2022-01-30T19:35:38Z
    date issued2020
    identifier other%28ASCE%29GM.1943-5622.0001567.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265607
    description abstractBarriers are commonly used to intercept landslide flows or debris flows. The presence of a barrier changes the flow condition and leads to a buildup of earth pressure in a zone behind the barrier. Investigating this buildup process is essential to understand the landslide–barrier interaction and the stress evolution inside the earth flow. This study used an explicit integration program to simulate earth pressure buildup in the impacting earth flow in a series of two-dimensional (2D) and three-dimensional (3D) impact cases. In the idealized 2D flow cases, the stress state of earth flow reached the active limit state after the flow started and maintained the stress state until impact. During impact, horizontal earth pressure buildup occurred and propagated backward to the continuing flow; a dead zone thus formed. When the material ceased flow, a static earth pressure distribution was achieved. Starting from the distance at which the static lateral earth pressure coefficient was close to that in the greenfield case, the coefficient increased toward the barrier due to the earth pressure buildup, approaching the passive mode in the dead zone immediately behind the barrier. The static earth pressure on the back of the barrier was not uniform, with a passive mode in the dead zone and an active mode in the run-up zone in which the earth pressure was more easily released after impact. In the 3D flow cases, the opening spaces at both sides of the barrier affected flow conditions and weakened the buildup process.
    publisherASCE
    titleEarth Pressure Buildup in Impacting Earth Flow behind a Barrier
    typeJournal Paper
    journal volume20
    journal issue2
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001567
    page04019170
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian