YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Functional Series Expansions and Quadratic Approximations for Enhancing the Accuracy of the Wiener Path Integral Technique

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Apostolos F. Psaros
    ,
    Ioannis A. Kougioumtzoglou
    DOI: 10.1061/(ASCE)EM.1943-7889.0001793
    Publisher: ASCE
    Abstract: A novel Wiener path integral (WPI) technique is developed for determining the response of stochastically excited nonlinear oscillators. This is done by employing functional series expansions in conjunction with quadratic approximations. The technique can be construed as an extension and enhancement in terms of accuracy of the standard (semiclassical) WPI solution approach where only the most probable path connecting initial and final states is considered for determining the joint response probability density function (PDF). In contrast, the technique developed herein accounts also for fluctuations around the most probable path, thus yielding an increased accuracy degree. An additional significant advantage of the proposed enhancement as compared to the most probable path approach relates to the fact that low-probability events (e.g., failure probabilities) can be estimated directly in a computationally efficient manner by determining only a few points of the joint response PDF. Specifically, the normalization step in the standard approach, which requires the evaluation of the joint response PDF over its entire effective domain, is circumvented. The performance of the technique is assessed in several numerical examples pertaining to various oscillators exhibiting diverse nonlinear behaviors, where analytical results are set vis-à-vis pertinent Monte Carlo simulation data.
    • Download: (1.394Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Functional Series Expansions and Quadratic Approximations for Enhancing the Accuracy of the Wiener Path Integral Technique

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265518
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorApostolos F. Psaros
    contributor authorIoannis A. Kougioumtzoglou
    date accessioned2022-01-30T19:32:53Z
    date available2022-01-30T19:32:53Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001793.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265518
    description abstractA novel Wiener path integral (WPI) technique is developed for determining the response of stochastically excited nonlinear oscillators. This is done by employing functional series expansions in conjunction with quadratic approximations. The technique can be construed as an extension and enhancement in terms of accuracy of the standard (semiclassical) WPI solution approach where only the most probable path connecting initial and final states is considered for determining the joint response probability density function (PDF). In contrast, the technique developed herein accounts also for fluctuations around the most probable path, thus yielding an increased accuracy degree. An additional significant advantage of the proposed enhancement as compared to the most probable path approach relates to the fact that low-probability events (e.g., failure probabilities) can be estimated directly in a computationally efficient manner by determining only a few points of the joint response PDF. Specifically, the normalization step in the standard approach, which requires the evaluation of the joint response PDF over its entire effective domain, is circumvented. The performance of the technique is assessed in several numerical examples pertaining to various oscillators exhibiting diverse nonlinear behaviors, where analytical results are set vis-à-vis pertinent Monte Carlo simulation data.
    publisherASCE
    titleFunctional Series Expansions and Quadratic Approximations for Enhancing the Accuracy of the Wiener Path Integral Technique
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001793
    page04020065
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian