YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vibration Attenuation and Amplification of One-Dimensional Uncoupled and Coupled Systems with Optimal Metafoundations

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Lei Xiao
    ,
    Feifei Sun
    ,
    Oreste Salvatore Bursi
    DOI: 10.1061/(ASCE)EM.1943-7889.0001786
    Publisher: ASCE
    Abstract: Finite locally resonant metafoundations represent an innovative solution for structural seismic response mitigation based on their filtering capabilities at selected frequency ranges. They inherit the filtering properties of periodic foundations and bands in which response amplitudes are reduced, the so-called attenuation zones. Nonetheless, other bands of vibration-induced resonances amplify the components of superstructure response and are generally named nonattenuation zones. Both frequency bandwidths and amplification depend on the dynamic properties of metafoundations and superstructures as well as their coupling. Thus, in order to shed light on the mechanisms of seismic mitigation of coupled systems endowed with optimal metafoundations, this paper explores both elastic uncoupled and coupled unit-cell chains in the frequency domain based on the analysis of various transfer functions. Moreover, to address uncertainty at the excitation level, time history analyses are performed with a set of natural accelerograms that characterize operating basis earthquakes; thus, response contributions from both attenuation zones and nonattenuation zones can be distinguished by relating response variances to peak responses. Eventually, the attenuation effects of optimal metafoundations, frequency shift of superstructures due to unit cells of metafoundations, and coupling of both attenuation zones and nonattenuation zones are analyzed in depth.
    • Download: (1.293Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vibration Attenuation and Amplification of One-Dimensional Uncoupled and Coupled Systems with Optimal Metafoundations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265512
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorLei Xiao
    contributor authorFeifei Sun
    contributor authorOreste Salvatore Bursi
    date accessioned2022-01-30T19:32:42Z
    date available2022-01-30T19:32:42Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001786.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265512
    description abstractFinite locally resonant metafoundations represent an innovative solution for structural seismic response mitigation based on their filtering capabilities at selected frequency ranges. They inherit the filtering properties of periodic foundations and bands in which response amplitudes are reduced, the so-called attenuation zones. Nonetheless, other bands of vibration-induced resonances amplify the components of superstructure response and are generally named nonattenuation zones. Both frequency bandwidths and amplification depend on the dynamic properties of metafoundations and superstructures as well as their coupling. Thus, in order to shed light on the mechanisms of seismic mitigation of coupled systems endowed with optimal metafoundations, this paper explores both elastic uncoupled and coupled unit-cell chains in the frequency domain based on the analysis of various transfer functions. Moreover, to address uncertainty at the excitation level, time history analyses are performed with a set of natural accelerograms that characterize operating basis earthquakes; thus, response contributions from both attenuation zones and nonattenuation zones can be distinguished by relating response variances to peak responses. Eventually, the attenuation effects of optimal metafoundations, frequency shift of superstructures due to unit cells of metafoundations, and coupling of both attenuation zones and nonattenuation zones are analyzed in depth.
    publisherASCE
    titleVibration Attenuation and Amplification of One-Dimensional Uncoupled and Coupled Systems with Optimal Metafoundations
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001786
    page04020058
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian