YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Solutions for Deep-Buried Lined Tunnels Considering Longitudinal Discontinuous Excavation in Rheological Rock Mass

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 006
    Author:
    Zhaofei Chu
    ,
    Zhijun Wu
    ,
    Quansheng Liu
    ,
    Baoguo Liu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001784
    Publisher: ASCE
    Abstract: For tunneling in a deep, soft rock mass, rock deformation and lining pressure, which are time-dependent behaviors, are mainly affected by rock rheology and longitudinal excavation processes. In practice, tunneling operations are often suspended due to various reasons, which will result in changes to the time-dependent behaviors of tunnel systems. To investigate the discontinuous advancement of the tunnel face in a soft rheological rock mass, in this study, closed-form analytical solutions are presented to analyze the time dependency of deep-buried circular lined tunnels. In the derivation, four types of viscoelastic models are utilized to consider the different creep behaviors of the host rock. The coupling effect between rock rheology and tunnel face advancement is also taken into account. To realistically simulate the process of tunnel face advancement, five different excavation methods are considered in the solutions that depend on whether the face stops and on the changes of advancing speeds before and after stoppage. The proposed solutions are validated by comparing the calculated results with those predicted by a finite difference simulation. According to the provided solutions, a series of parametric analyses are systematically performed to investigate the influences of the lining installation time, the duration of the tunnel face stoppage, the tunnel face advancing parameters, and the rheological parameters of the rock on rock stresses and displacement, as well as the support pressure. Finally, the proposed solutions are successfully applied to the Rong Jiawan tunnel when an excavation stoppage occurs halfway before tunnel completion, and the theoretical predictions are in good agreement with the field monitoring data. The solutions proposed in this paper provide an efficient analytical approach for predicting and analyzing the discontinuous excavation of rheological tunnels.
    • Download: (1.400Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Solutions for Deep-Buried Lined Tunnels Considering Longitudinal Discontinuous Excavation in Rheological Rock Mass

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265510
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorZhaofei Chu
    contributor authorZhijun Wu
    contributor authorQuansheng Liu
    contributor authorBaoguo Liu
    date accessioned2022-01-30T19:32:40Z
    date available2022-01-30T19:32:40Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001784.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265510
    description abstractFor tunneling in a deep, soft rock mass, rock deformation and lining pressure, which are time-dependent behaviors, are mainly affected by rock rheology and longitudinal excavation processes. In practice, tunneling operations are often suspended due to various reasons, which will result in changes to the time-dependent behaviors of tunnel systems. To investigate the discontinuous advancement of the tunnel face in a soft rheological rock mass, in this study, closed-form analytical solutions are presented to analyze the time dependency of deep-buried circular lined tunnels. In the derivation, four types of viscoelastic models are utilized to consider the different creep behaviors of the host rock. The coupling effect between rock rheology and tunnel face advancement is also taken into account. To realistically simulate the process of tunnel face advancement, five different excavation methods are considered in the solutions that depend on whether the face stops and on the changes of advancing speeds before and after stoppage. The proposed solutions are validated by comparing the calculated results with those predicted by a finite difference simulation. According to the provided solutions, a series of parametric analyses are systematically performed to investigate the influences of the lining installation time, the duration of the tunnel face stoppage, the tunnel face advancing parameters, and the rheological parameters of the rock on rock stresses and displacement, as well as the support pressure. Finally, the proposed solutions are successfully applied to the Rong Jiawan tunnel when an excavation stoppage occurs halfway before tunnel completion, and the theoretical predictions are in good agreement with the field monitoring data. The solutions proposed in this paper provide an efficient analytical approach for predicting and analyzing the discontinuous excavation of rheological tunnels.
    publisherASCE
    titleAnalytical Solutions for Deep-Buried Lined Tunnels Considering Longitudinal Discontinuous Excavation in Rheological Rock Mass
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001784
    page04020047
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian