YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical Analysis of Human–Structure Interaction on Steel-Concrete Composite Floors

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 004
    Author:
    Jiepeng Liu
    ,
    Liang Cao
    ,
    Y. Frank Chen
    DOI: 10.1061/(ASCE)EM.1943-7889.0001740
    Publisher: ASCE
    Abstract: An accurate determination on the acceleration response of a long-span and lightweight steel-concrete composite floor is essential for assessing the floor’s human-induced vibration serviceability, in which the interaction between human and structure should be considered. In the theoretical analysis, the human and floor subsystem are idealized as the linear oscillator model and anisotropic rectangular plate, respectively. This paper presents an analytical approach to determine the acceleration response induced by the walking activity on a steel-concrete composite floor with two opposite edges simply supported and the other two edges clamped. The proposed approach is based on the combined weighted residual and perturbation method. Implementation of this method is simple and avoids cumbersome mathematical calculations. The theoretical solution is validated with experimental results. A sensitivity study using the analytical solution was also conducted to investigate the effects of walking path, damping ratio, and walking frequency on the peak acceleration.
    • Download: (364.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical Analysis of Human–Structure Interaction on Steel-Concrete Composite Floors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265468
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJiepeng Liu
    contributor authorLiang Cao
    contributor authorY. Frank Chen
    date accessioned2022-01-30T19:31:26Z
    date available2022-01-30T19:31:26Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001740.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265468
    description abstractAn accurate determination on the acceleration response of a long-span and lightweight steel-concrete composite floor is essential for assessing the floor’s human-induced vibration serviceability, in which the interaction between human and structure should be considered. In the theoretical analysis, the human and floor subsystem are idealized as the linear oscillator model and anisotropic rectangular plate, respectively. This paper presents an analytical approach to determine the acceleration response induced by the walking activity on a steel-concrete composite floor with two opposite edges simply supported and the other two edges clamped. The proposed approach is based on the combined weighted residual and perturbation method. Implementation of this method is simple and avoids cumbersome mathematical calculations. The theoretical solution is validated with experimental results. A sensitivity study using the analytical solution was also conducted to investigate the effects of walking path, damping ratio, and walking frequency on the peak acceleration.
    publisherASCE
    titleTheoretical Analysis of Human–Structure Interaction on Steel-Concrete Composite Floors
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001740
    page04020007
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian